|
|
Авторизация |
|
|
Поиск по указателям |
|
|
|
|
|
|
|
|
|
|
van der Giessen E., Wu Theodore Y.-T., Hassan A. — Advances in Applied Mechanics. Volume 38 |
|
|
Предметный указатель |
Reynolds number, aquatic and aerial locomotion 296—297
Reynolds number, high Reynolds number 296 314—332
Reynolds number, low Reynolds number 296 334—337
Reynolds number, resistive theory and 301
Rez, J.S. 256 284
Ribarsky, M.W. 133 144
Rice, J.R. 29 68 93 155 167 214 277 286
Rice, R.W. 245 255 286
Rifai, M.S. 7 93
Riomann — Hilbert problem 311 328
Ritter, A.P. 256 288
Rivlin, R.S. 7 91
Robbins, M.O. 131 145
Robels, U. 242 256 282 286
Rodden, W.P. 299 325 350
Rodel, J. 259 285
Rogers, R.C. 28 93
Rosakis, P. 83 93
Roux, S. 53 91
Rowlinson, J.S. 104 106 110 116 118 142 145
Ru, C.Q. 199 209 218 219 249 254 286
Rupture, cylindrical interface 122
Rupture, film 112
Rusanov, A.I. 113 145
Saada, G. 186 28/
Saint-Venant’s effect 30 32
Sakara, M. 159 283
Sakata, M. 68 88
Salmon, metabolic rate and scale effects 340—341
Salmon, scaling of viscous drag 344—347
Sandberg, W.C. 348 352
Sando, M. 258 287
Savage, A. 247 285
Saville, G. 110 142
Scale effects, metabolic rate and 340—341
Scale effects, metabolic rate and swimming velocity and energy cost 341—344
Scale effects, metabolic rate and viscous drag 344—347
Scalia, A. 257 283
Scattering, fracture toughness 263—264
Schmidt-Nielsen, K. 340 352
Schneider, G.A. 199 262 264 268 282 284 286 289
Scott, J.F. 256 28/
Scott, M.T. 325 326 351
Sears, W.R. 325 332 350
Second-gradient theories, latent substructures 70—73
Segev, R. 8 14 25 93
Self-force decomposition 69
Self-force surface 37
Self-force, elimination of 77
Self-propulsion, microorganism in viscous fluid 293
Self-propulsion, slender swimming animal 300
Semi-infinite piezoelectric crack 210—214
Serrin, J. 73 90
Shang, J.K. 258 259 287 288
Shankar, N. 238 256 283 288
Shchekin, A.K. 118 143
Shelleman, D.L. 255 28/
Shen, S.P. 209 286
Shen, Y.P. 220 221 228 231 234 235 288
Shen, Z.Y. 177 282
Shen.S. 274 286
Shibahara, M. 103 145
Shillor, M. 8 90
Shindo, Y. 178 286
Shintani, A. 134 143
Shioya, T. 220 231 234 235 280
Shirane, G. 83 91 283
Shockley, W. 162 281
Shpeizman, V.V. 265 289
Shrinking, cavity to crack 204 208 226
Shrinking, disc to crack tip 57—58 60 62
Side-edge section, trailing: fish body 307—310 312—313
Sides, S.W. 110 145
Sih, G.C. 274 286 289
Sikkenk, J.H. 106 110 134 144 145
Silhavy, M. 42 93
Simo, J.C. 7 90 93
Singh, R.G. 260 287
Singh, R.N. 235 284
Singh, U.C. 103 145
Skokov, S. 103 145
Sleigh, M.A. 293 350
Slender-body theory 297—298
Slender-body theory, applied to body motion 347
Slender-body theory, fish locomotion 301—314
Slit crack, electric and mechanical fields 178—183
Smith, A.M.O. 325 352
Smith, H.L. 199 283
Smith, P.L. 255 285
Smith, T.E. 237 286
Socolescu, D. 8 88
Sokolnikoff, I.S. 171 200 286
Solid-melt interfaces 133—134
Sonoluminescence, MD simulation 139—140
Sosa, H.A. 175 220 286 287
Spedding, G.R. 298 351
Spherical interfaces, liquid-liquid interfaces 128
Spherical interfaces, liquid-solid interfaces 134—135
Spherical interfaces, MD simulation 113—119
Spherical interfaces, three-phase systems 137—138
Spirochete locomotion 293
Spreading wetting, MD simulation 138
Stability, film 110—112
Stability, planar interface: liquit i—liquid 127—128
Static equilibrium equation 153—154
Stazi, F.L. 87 92
Stecki, J. 124 126 145
Steinmann, P. 78 93
Stokeslet, aquatic locomotion and 300
Stokeslet, distribution 335—336
Stoll, W.A. 239 281
Storz, L. 255 281
Strang, G. 8 91 92
Stress, domain switching-induced 240
Stress, intensity factor 213—214 233—234 273—274
Stress, local, liquid film in bulk vapor 107—108
Stress, Maxwell 237
Stress, Peierls — Nabarro 244
Stress, Piola — Kirchhoff 42 84
Stress, pseudoisothermal 157—158
Stroh, A.N. 162 287
Stroh’s formalism, solutions to 2-D electrostatic problems 162—166
Stroke, upward and downward 299
Structure, own, discontinuity surfaces 35—38
Struthers, A. 53 91
Su, Y. 314 352
Subbarao, E.C. 242 257 283
Substructural interactions at crack tip 56—57
Substructural interactions, balance 77
Substructural interactions, representational problem 4
Substructural kinetic coenergy density 22—23
Substructure, elastic materials with 26—32
Substructure, latent 68—73
Substructure, materials with, crack propagation in 53—68
Substructure, materials with, evolution of defects and interfaces in 42—53
Substructure, virtual, pore as 14
Sun, C.T. 162 183 258 260 261 263 272 283 285 287
Suo, Z. 162 165 166 171 179 183 199 209 210 211 212 214 238 239 240 258 267 273 282 284 287 288
Supination recovery stroke 299
Surface tension, bubbles 119
Surface tension, droplets 116—118
Surface tension, liquid film in bulk vapor 110
Surface tension, liquid jet 121—122
Surface tension, planar interfaces: liquid-liquid 124—125
Surfactants, MD simulation 140
Suzuki, D. 132 144
Swimming, motion, Reynolds number 334—337
Swimming, velocity, scaling of 341—344
Szeri, A.J. 139 145
Tajima, K. 258 287
| Takahashi, K. 96 142
Tan, M.J. 275 284
Tan, X. 258 259 287 288
Tanaka, K. 178 286
Tanasawa, I. 112 145
Tang, R.J. 233 235 287
Tashiro, S. 285 285
Tavares, T.S. 325 326 351
Taylor expansion 31
Taylor, G.I. 293 300 301 352
Temperature effects, bending strength 245—247
Temperature effects, fracture of piezoelectric ceramics 255—256
Temperature jump, at flow boundary 132—133
Temperature, compliance dependent on 243—245
Theordorsen, T. 326 352
Thermodynamic functions, piezoelectric materials 152—161
Thermophysical properties, MD simulation 101—102
Thompson, P.A. 131 132 145
Thompson, S.M. 110 116 118 142 145
Three-phase systems, planar interfaces 136—137
Three-phase systems, spherical interfaces 137—138
Three-phase systems, spreading wetting and contact line region 138—139
Thrust, and drag, in fish locomotion 333—338
Tien, C.L. 96 101 103 106 107 108 109 111 116 118 119 120 142 144 145 146
Tiersten, H.F. 7 79 92
Tildesley, D.J. 97 99 103 123 142
Time-marching method, computational 324—325
Ting, T.C.T. 162 164 166 175 186 191 199 280 287
Tobin, A.G. 258 259 260 287
Todd, B.D. 135 145
Tolman length 117—118
Tolman, R.C. 116 145
Tolman’s equation 116
Tong, P. 166 167 172 174 189 249 272 282 287 288
Toughness see “Fracture toughness”
Toupin, R.A. 7 32 93
Toxvaerd, S. 124 126 128 144 145
Traction, crack tip 65
Transition layers, two-phase materials 75—76
Transport coefficients, interfacial 141
Transport coefficients, MD simulation 102—103
Transport coefficients, planar interfaces: liquid-liquid 125—127
Travis, K.P. 135 145
Tricomi, F.G. 7 19 32 93
Troian, S.M. 131 132 145
Truesdell, C.A. 6 7 78 90 93
Tsutsui, K. 136 146
Tucker, V.A. 340 352
Tully, J.C. 101 145
Tuttle, B.A. 256 288
Two-phase materials, multifield theories 75—76
Uchino, K. 199 256 257 279 282 287
Ugarte, D. 138 145
Umehara, T. 134 143
Unified nonlinear theory, flexible, lifting-surface locomotion 314—333
Van Leeuwen, J.M.J. 106 110 134 144 145
van Woerkom, A.B. 110 144
Vapor film, in bulk liquid 112—113
Vaudin, M.D. 257 288
Velocity, crack tip 55—56 61
Velocity, swimming, scaling of 341—344
Velocity, Verlet algorithm 99
Vergeles, M. 135 145
Villaggio, P. 7 32 78 91 93
Virga, E.G. 7 8 9 10 14 25 38 89 90 92 93
Virkar, A.V. 256 273 285
Virtual work, crack-free piezoelectric solid 158—159
Virtual work, piezoelectric 154—156
Visintin, A. 8 76 89
Voids, materials with: multifield theories 74—75
Voight, W. 6 93
von Alpen, U. 186 281
von Karman, T. 297 325 332 340 350
von Karman’s vortex street 337
Vorozhtsov, E.V. 25 91
Vortex sheets, free and bound 320—321
Vortex sheets, interaction with body 349
Vortex sheets, interaction with caudal fin 310—311
Vortex sheets, shed from side fins 308
Vortex sheets, wake 318
Vossnack, E.O. 134 145
Vu-Quoc, L. 7 93
Vuong, V.Q. 139 145
Wagner effect 293 296 332
Wagner integral equation, classical 330
Wagner integral equation, generalized 330
Wagner — von Karman — Sears method 325—331
Wagner, H. 325 332 352
Wainwright, W.L. 7 91
Wake, momentumless 337—338
Wake, vortex sheets 318
Walker, J.A. 348 352
Walls, solid, classic MD simulation 100
Walsh, E.K. 8 75 92
Walton, J.P.R.B. 116 118 145
Wang, B. 186 220 231 284 287
Wang, B.L. 275 287
Wang, H.Y. 260 287
Wang, J. 7 8 75 90 93
Wang, M.Z. 209 218 282
Wang, T.C. 249 254 272 287
Wang, Z.K. 220 257
Warren, W.E. 237 286
Warren, W.L. 256 288
Wasan, D.T., Ill 128 142
Waser, R.M. 256 288
Wasp, chalcid, hovering 294
Webb, P.W. 334 344 346 347 352
Weihs, D. 298 325 340 351 352
Weiner, B. 103 142 145
Weis — Fogh mechanism 294
Weis-Fogh, T. 294 352
Weng, J.G. 101 106 107 108 109 111 116 118 119 120 145 146
Westneat, M.M. 348 352
Wheeler, A.A. 8 88
White, G.S. 257 258 282 288
Whitman, A.B. 7 89 90
Widom, B. 104 106 145
Wienecke, H.A. 220 281
Willeke, M. 129 143
Willemsen, J.F. 135 143
Williams, F.W. 186 284
Williams, M.L. 219 288
Williams, W. 7 89
Willis, J.R. 162 165 166 171 179 183 209 211 212 214 287
Winet, H. 293 349 350
Winkelmann, J. 98 110 144
Winzer, S.R. 256 288
Wolfgang, M.J. 348 352
Wong, B.C. 114 144
Wu, K.C. 213 288
Wu, S. 135 146
Wu, T.Y. 293 294 296 298 301 302 304 305 308 310 311 312 313 315 316 334 335 336 337 339 341 342 344 348 349 350 351 352 353
Xu, Z. 258 259 287 288
Yamaguchi, Y. 138 144
Yang, J.X. 138 146
Yang, W.J. 136 146 199 238 240 241 258 267 273 284 288 289
Yao, Z. 235 281
Yasui, K. 139 146
Yasuoka, K. 112 114 118 143 144 146
Yates, G.T. 302 314 339 341 342 344 352 353
Yin, X.L. 256 288
Yoo, I.K. 256 281
Young, D.A. 139 144 145
Yu, J.S. 220 283
Yu, S.W. 209 275 280 286
Zemel, J.N. 135 143
Zeng, X.C. 118 142 143
Zhang, L.B. 256 288
Zhang, Q.C. 256 288
|
|
|
Реклама |
|
|
|