Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
van der Giessen E., Wu Theodore Y.-T., Hassan A. — Advances in Applied Mechanics. Volume 38
van der Giessen E., Wu Theodore Y.-T., Hassan A. — Advances in Applied Mechanics. Volume 38



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Advances in Applied Mechanics. Volume 38

Àâòîðû: van der Giessen E., Wu Theodore Y.-T., Hassan A.

Àííîòàöèÿ:

Mechanics is defined as a branch of physics that focuses on motion and
the reaction of physical systems to internal and external forces.
This highly acclaimed series provides survey articles on the present state and future direction of research in important branches of applied solid and fluid mechanics.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 372

Äîáàâëåíà â êàòàëîã: 30.10.2010

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Lam, P.S.      68 92
Landau, L.D.      76 92 237 284
Landis, C.M.      239 242 283
Landman, U.      120 133 144
Lang, T.G.      334 351
Lanthanum, PZT ceramics doped with      257—258 261—262
Laplace equation      303—304
Laradji, M.      128 140 144
Latent microstructures      7
Latent substructures      68—73
Lattices, representative volume element      85—86
Lawn, B.R.      255 256 262 279 280
Laws, N.      7 91
Lead zirconate titanate      see “PZT ceramics”
Leading-edge section, anterior: fish body      305—307 312
Lee, J.S.      186 284
Lee, S.      214 288
Lekhnitskii, S.G.      162 284
Li, C.Q.      239 284
Li, D.      103 144
Li, Q.      213 286
Li, S.F.      275 284
Li, X.P.      249 284
Liang, J.      186 221 234 235 281 284
Liang, X.G.      96 103 142 144
Liang, Y.C.      186 284
Liao, J.J.      112 143
Liew, K.M.      275 284
Lifschitz, E.M.      237 284
Lifting surface locomotion, flexible      314—333
Lifting surface, aspect-ratio      295
Lifting surface, undulatory motion      297
Lighthill, M.J.      293 294 296 297 300 301 302 305 306 307 314 348 351
Lighthill’s theory      307
Lin, F.Z.      235 280
Liquid jets, MD simulation      119—122
Liquid phase epitaxy      133
Liquid-liquid interfaces, MD simulation      122—130
Liquid-liquid interfaces, mixtures      128—130
Liquid-liquid interfaces, planar      124—128
Liquid-liquid interfaces, spherical      128
Liquid-solid interfaces, cylindrical      135—136
Liquid-solid interfaces, planar      130—134
Liquid-solid interfaces, spherical      134—135
Liquid-vapor interfaces, cylindrical      119—122
Liquid-vapor interfaces, MD simulation      103—122
Liquid-vapor interfaces, planar      104—113
Liquid-vapor interfaces, spherical      113—119
Lithographical Induced Self-Assembly      136—137
Little, E.A.      83 92
Liu, G.N.      220 221 228 231 234 235 288
Liu, J.X.      186 284
Liu, Y.J.      220 221 228 231 234 235 288
Lloyd, I.S.      258 282
Loboda, V.V.      209 219 220 277 282
Local pressure components, liquid film in bulk vapor      105—107
Localization phenomena, of deformation      87
Locomotion, aquatic and aerial, hydrodynamic theories      296—299
Locomotion, aquatic, resistive theory      300—301
Locomotion, aquatic, scale effects in energetics of      338—347
Locomotion, fish, classical slender-body theory      301—314
Locomotion, fish, thrust and drag in      333—338
Locomotion, flexible lifting-surface, unified nonlinear theory      314—333
Locomotion, maneuvering modes      347—348
Long, L.N.      114 144
Longitudinal flexibility, slender body with      305—311
Lothe, J.      162 164 165 171 186 250
Lu, P.      186 215 284
Lu, W.      239 284
Luedtke, W.D.      133 144
Lukes, J.R.      96 101 103 106 107 108 109 111 142 144 146
Lunate-tail theory      298
Lupascu, D.C.      259 285
Lusk, M.T.      8 91
Lynch, C.S.      83 91 199 239 240 258 261 267 273 280 281 283 284
Mai, Y.W.      186 209 219 275 286
Majumdar, A.      111 136 144
Makino, H.      265 284
Mao, S.X.      249 284
Mao, X.      199 209 249 286
Mariano, P.M.      8 9 23 25 29 32 38 42 53 67 75 83 87 88 89 92
Markov, K.Z.      8 92
Marlow, R.S.      7 88
Marsden, J.E.      7 92 93
Marshall, D.B.      262 279
Maruyama, S.      96 98 101 132 138 144
Marzocchi, A.      14 89
Mataga, P.A,      275 284
Matsumoto, M.      112 114 118 143 144 146
Matsumoto, S.      101 138 144
Maugin, G.A.      25 53 65 92 275 281
Maxwell stress      237
McCune, J.E.      325 326 351
McCutchen, C.W.      330 351
McFadden, G.B.      8 88
McGuiggan, P.M.      131 142
McHenry, K.D.      257 284
McMeeking, R.M.      83 91 175 183 199 239 240 241 242 258 267 273 277 283 284 285
McMillan, L.D.      256 281
MD      see “Molecular dynamics simulation”
Mechanical dissipation inequality      39 45 50—52 61—63
Mechanical enthalpy, piezoelectric materials      153
Mechanical fracture, toughness      199
Mecholsky, J.J.      255 281
Mecke, M.      98 110 144
Meguid, S.A.      186 209 218 219 281 285 289
Mehta, K.      256 273 285
Melnick, B.M.      256 281
Meschke, F.A.      264 284
Metabolic rate, and scale effects      340—341
Mezic, I.      111 136 144
Micci, M.M.      114 144
Microcracked bodies, models      18
Microcracked materials, multifield theories      83—87
Microcracks as virtual substructure      14
Microcracks in PZT specimens      257—258
Microcracks, deformation      83—87
Microcracks, distributions      3
Micromorphic continuum      7
Micromorphic materials, multifield theories      78—79
Microstructure, fracture of piezoelectric ceramics and      255—256
Miller, R.C.      247 285
Mindlin, G.      7 79 92
Mixtures, liquids, MD simulation      128—130
Molecular dynamics simulation, classic      97—103
Molecular dynamics simulation, liquid-liquid interfaces      122—130
Molecular dynamics simulation, liquid-solid interfaces      130—136
Molecular dynamics simulation, liquid-vapor interfaces      103—122
Molecular dynamics simulation, nonclassic      103
Molecular dynamics simulation, sonoluminescence      139—140
Molecular dynamics simulation, surfactants      140
Molecular dynamics simulation, three-phase systems      136—139
Molkov, V.      220 221 225 228 229 230 283
Momentum, substructural and standard      58
Momentum, wake      337—338
Moriguchi, K.      134 143
Moseler, M.      120 144
Moss, W.C.      139 144
Motions, active propulsive      317
Motions, swimming, Reynolds number      334—337
Motions, velocity fields      11—12
Motooka, T.      133 134 143 144
Mouritsen, O.G.      128 140 144
Multifield theories, balance in presence of discontinuity surfaces      33—38
Multifield theories, configurations and balance of interactions      9—26
Multifield theories, constitutive restrictions      38—42
Multifield theories, Cosserat continua      76—78
Multifield theories, elastic materials with substructure      26—32
Multifield theories, ferroelectric solids      81—83
Multifield theories, latent substructures      68—73
Multifield theories, material with voids      74—75
Multifield theories, materials with substructure, crack propagation in      53—68
Multifield theories, materials with substructure, evolution of defects and interfaces      42—53
Multifield theories, microcracked materials      83—87
Multifield theories, micromorphic materials      78—79
Multifield theories, nematic liquid crystals      80—81
Multifield theories, two-phase materials      75—76
Munetoh, S.      133 134 143 144
Murillo, L.E.      298 350
Muscular power, specific      393
Musesti, A.      14 89
Muskhelishivili, N.I.      162 285 311 328 351
Nabarro, F.R.N.      7 79 92 244 285
Nagai, M.      334 351
Naghdi, P.M.      7 91 92
Nakamura, Y.      333 351
Nanoboundary problems, planar interfaces: liquid-solid      130—133
Nanoscale tube, capillary phenomenon      138—139
Narita, F.      178 286
Nedjar, B.      8 90
Nematic liquid crystals, multifield theories      80—81
Newman, J.N.      301 302 304 305 310 351 353
Nicolas, P.      8 75 90
Nijmeijer, M.J.P.      106 110 134 144
Nishihira, K.      133 144
Nishioka, T.      274 286
No-slip condition, at nanoboundary      131—132
Noether’s theorem      6
Noll, W.      9 25 92
Nonequilibrium MD methods      102—103
Nonisotopic mixtures, liquid      128—130
Nuffer, J.      259 285
Nunziato, J.W.      8 75 89 92
Nye, J.F.      161 255
Observer, changes of      16 19 24—25 78
Observer, external spatial      4
Observer, fixed and moving      44 47^8
Ogita, A.      101 144
Ohara, T.      132 144
Ohguchi, K.      118 143
Okazaki, K.      285 285
Orowan, E.      199 271 255
Oscillation, bubble, and sonoluminescence      139—140
Outer power, invariance of      16—21
Owen, D.R.      8 9 42 89
Ozoe, H.      134 143
Pak, Y.E.      156 162 166 176 186 187 198 220 258 259 260 285 287
Park, S.B.      162 183 260 261 263 272 285 287
Park, S.H.      101 106 107 108 109 111 116 118 119 120 145 146
Parry, G.      7 89
Parton, V.Z.      152 175 285
Pastor, R.W.      123 146
Patch in multifield theories      2
Patch, displacement      83
Patch, placement      9—10
Patch, second-order tensor for      3
Paz de Araujo, C.A.      256 281
Pedley, T.J.      294 348 352
Peierls, R.      242 285
Pence, T.J.      38 93
Penrose, O.      76 93
Pertsev, N.A.      240 242 280 285
Phantom molecules model      101
Phase transformation-toughening theory      241
Piezoelectric ceramics, 2-D electroelastic problems and Stroh’s formalism      162—186
Piezoelectric ceramics, 3-D electroelastic problems      220—236
Piezoelectric ceramics, conductive cracks      199—209
Piezoelectric ceramics, domain switching      239—242
Piezoelectric ceramics, domain wall kinetics model      242—249
Piezoelectric ceramics, electrostriction      237—239
Piezoelectric ceramics, fracture behavior, experimental observations      255—270
Piezoelectric ceramics, fracture behavior, failure criteria      270—274
Piezoelectric ceramics, fracture behavior, mode III cracks      173—175
Piezoelectric ceramics, fracture behavior, nonlinear approaches      236—254
Piezoelectric ceramics, interface cracks      209—220
Piezoelectric ceramics, polarization saturation model      249—254
Piezoelectric ceramics, poling field      150
Piezoelectric dislocation, force on      198—199
Piezoelectric dislocation, interaction with, conductive crack      205—209
Piezoelectric dislocation, interaction with, elliptical cavity      191—193
Piezoelectric dislocation, interaction with, finite crack      217
Piezoelectric dislocation, interaction with, semi-infinte crack      215—216
Piezoelectric dislocation, screw type, interaction with elliptical cavity      187—190
Piezoelectric dislocation, use of Laurent series      186—187
Piezoelectric materials, basic equations for thermodynamic, functions      152—161
Piezoelectric materials, electric domain      148
Piezoelectric materials, elliptical cavity solution in      169—172
Ping, T.      154 172 173 174 177 179 274 276 288
Piola ? Kirchhoff stress      42 84
Planar interfaces, liquid film in bulk vapor      104—112
Planar interfaces, liquid-liquid interfaces      124—128
Planar interfaces, liquid-solid interfaces      130—134
Planar interfaces, three-phase systems      136—137
Planar interfaces, vapor film in bulk liquid      112—113
Planar moving cracks, kinematics      54—56
Plasticity, Cosserat      78
Plasticity, strain gradient      79
Plemelj’s formula      311—312 321—322
Podio-Guidugli, P.      7 8 25 79 89 91
Pohanka, R.C.      255 256 273 280 285
Poincare — Bertrand formula      328
Polarization saturation model      249—254
Polarization saturation zone      272
Polarization switching, piezoelectric ceramics      240
Polarization, crystalline materials      81
Polarization, ferroelectric domain wall evolution during      83
Poling, piezoelectric ceramics      150
Poling, PZT ceramics      265—267
Pontikis, V.      133 142
Pore, as virtual substructure      14
Potential flow theory      338
Povstenko, Y.Z.      7 93
Powles, J.G.      118 145
Prandtl’s acceleration potential      304
Prasad, N.N.V.      159 286
Pressure tensor, droplets      115—116
Process zone, crack tip, energy dissipated in      66—67
Pronation power stroke      299
Proportional feathering      298
Proportional flexurality      299
Pseudoisothermal approach, piezoelectric materials      157—160
Putterman, S.J.      139 142
Pyatetskiy, V.Y.      346 347 352
Pyroelectric phase      148
PZT ceramics, bending strength      265—267
PZT ceramics, containing vacuum flaw      179
PZT ceramics, crack failure      271
PZT ceramics, damage evolution in      259
PZT ceramics, ferroelectric fatigue failure      257—258
PZT ceramics, fracture toughness      256 263—264
PZT ceramics, indentation fracture technique      260—263
Qi, H.      235 28/
Qian, C.-F.      154 172 173 174 177 179 199 268 271 274 276 277 278 282 288
Qin, Q.H.      186 209 219 275 286
Qin, T.Y.      233 235 287
Qu, J.      213 286
Quantum molecular dynamics      103
Quasi-stationary wakeless flow      326
Quintanilla      79 88
Radial decay      32
Ramamurti, R.      348 352
Ramirez-Santiago, G.      98 124 125 127 142
Raynes, A.S.      257 288
Read, W.T.      162 28/
Remote loading, ellipsoidal cavity under      223—231
Remote loading, elliptical cylinder cavity under      167—175
Remote loading, uniform, conductive cracks      200—202
Renardy, M.      28 93
Representative volume element, lattice      85—86
Resistive theory, aquatic locomotion      300—301
1 2 3 4 5
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå