Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
van der Giessen E., Wu Theodore Y.-T., Hassan A. — Advances in Applied Mechanics. Volume 38
van der Giessen E., Wu Theodore Y.-T., Hassan A. — Advances in Applied Mechanics. Volume 38



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Advances in Applied Mechanics. Volume 38

Àâòîðû: van der Giessen E., Wu Theodore Y.-T., Hassan A.

Àííîòàöèÿ:

Mechanics is defined as a branch of physics that focuses on motion and
the reaction of physical systems to internal and external forces.
This highly acclaimed series provides survey articles on the present state and future direction of research in important branches of applied solid and fluid mechanics.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 372

Äîáàâëåíà â êàòàëîã: 30.10.2010

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Electrostatic problems, 3-D, ellipsoidal cavity under remote loading      223—231
Electrostatic problems, 3-D, general solutions      220—223
Electrostatic problems, 3-D, planar cracks under arbitrary loading      231—236
Electrostriction      237—239
Elliptical cylinder cavity surface, extended line force on      193
Elliptical cylinder cavity under remote loading      167—175
Elliptical cylinder cavity, interaction with, general piezoelectric dislocation      191—193
Elliptical cylinder cavity, interaction with, piezoelectric screw dislocation      187—190
Elongated-body theory      see “Slender-body theory”
Energetics, aquatic locomotion, scale effects in      338—347
Energetics, ciliates      336—337
Energy cost, scaling of      341—344
Energy dissipated in crack tip process zone      66—67
Energy release rate for crack propagation      159—160 183—186
Energy release rate, applied and local, failure criteria      271—273
Energy release rate, critical applied      278
Energy release rate, local, as failure criteria      254
Energy release rate, piezoelectric materials      155—156
Energy, excess      107—108
Energy, free      152
Energy, full Gibbs, piezoelectric materials      153
England, A.H.      219 281
Enskog’s rule      129
Epstein, M.      7 90 209 286
Equilibrium MD methods      101
Erdogan, F.      219 281
Ericksen, J.L.      6 7 9 19 42 53 78 90
Eringen, A.C.      7 79 90
Eshelby tensor      29 46
Eshelby, J.D.      30 53 68 88 90 162 186 281
Euler — Lagrange equations      28
Evans, A.G.      240 241 258 280 285
Evans, D.J.      135 145
Evans, W.A.B.      118 145
Evaporation, and condensation: coefficients      112
Evolution equation, for interface      49 52
Evolution, damage in PZT ceramics      259
Evolution, defects and interfaces in materials with substructure      42—53
Explosive boiling      136—137
Extended compliance tensor      171
Extended line force, on elliptical cavity surface      193
Fabrikant, V.I.      234 281
Fading memory theorems      20 25
Failure criteria, fracture behavior of piezoelectric ceramics      270—274
Failure criteria, local energy release rate as      254
Faivre, G.      186 281
Fan, J.      239 281
Fan, W.X.      175 186 282
Fang, D.N.      235 239 280 281 284
Farvaque, J.L.      186 281
Feathering, proportional      298
Feller, S.E.      123 146
Ferroelectric ceramics, domain switching      241—242
Ferroelectric ceramics, microcracking      258—259
Ferroelectric solids, multifield theories      81—83
Field, M.J.      103 142
Fife, P.C.      76 93
Film stability and rupture      110—112
Film, thin, ferroelectric      149
Film, vapor, in bulk liquid      112—113
Finite difference method, classic MD simulation      99
Finite element analysis      269
Finite element analysis, nonlinear      239
Fischer, J.      98 110 135 143 144
Fish locomotion, classical slender-body theory      301—314
Fish locomotion, flexible lifting-surface: nonlinear theory      314—333
Fish locomotion, thrust and drag in      333—338
Flagellar hydrodynamics, spirilla locomotion      293
Flagellar hydrodynamics, spirockete locomotion      293
Fleck, N.A.      79 90 239 242 283
Flexibility, longitudinal, slender body with      305—311
Flow boundary condition, fish locomotion      315
Flow boundary condition, questions regarding      131—132
Fomin, V.M.      25 91
force      see also “Self-force”
Force on piezoelectric dislocation      198—199
Force, configurational      43—61
Force, driving, at crack tip      63—65
Foreign particles, diffusion process of      133—134
Forstmann, F.      98 124 125 127 142
Fosdick, R.L.      14 90
Fowler, R.F.      118 145
Fox, D.D.      7 90 93
Fracture behavior, alternating electric field effect      256—259
Fracture behavior, bending tests      265—267
Fracture behavior, conductive cracks      267—270
Fracture behavior, microstructure and temperature effects      255—256
Fracture behavior, piezoelectric ceramics, mode III cracks      173—175
Fracture behavior, piezoelectric ceramics, nonlinear approaches      236—254
Fracture behavior, static electric field effect      259—264
Fracture toughness, conductive cracks      268
Fracture toughness, electrical      270 278
Fracture toughness, electrical and mechanical      199
Fracture toughness, piezoelectric ceramics      255—256
Fracture toughness, scattering of      263—264
Free energy density      39—40 72
Free energy density along crack      61
Free energy, piezoelectric materials      152
Freiman, S.W.      245 255 256 257 280 281 285 285 286 288
Fremond, M.      8 75 76 89 90
Frenklach, M.      103 142 145
Freund, L.B.      65 67 68 90 92
Fried, E.      8 53 76 91
Froude hydromechanical efficiency      301
Fu, R.      199 242 244 245 247 248 249 256 262 263 265 267 268 271 273 277 278 282
Full Gibbs energy, piezoelectric materials      153 155
Fulton, C.C.      249 282
Furuta, A.      199 251 279 282
Futamura, K.      68 89
Gabrielli, G.      340 350
Gad-el-hak, M.      130 142
Gaitan, D.F.      139 142
Gao, C.F.      167 175 186 209 218 249 254 272 282
Gao, H.      249 282
Gauss theorem      15 17 20 29 37 44 51
Gee, M.L.      131 142
Geometry, interfaces      33—35
Germain, P.      7 25 38 91
Geyersmans, P.      133 142
Giesing, J.P.      325 350
Giovine, P.      8 23 25 26 68 72 73 89
Gmelin, E.      186 281
Gong, X.      238 239 273 282
Goodman, M.A.      7 91
Gorse, D.      133 142
Grach, G.      8 53 76 91
Grain boundary, microcracks initiated at      245—246
Gray, J.      293 300 301 333 334 348 350
Gray’s paradox      293 349
Green, A.E.      7 91
Green’s function in boundary element method      276
Green’s function, piezoelectric dislocation and      186—199
Grest, G.S.      99 110 131 144 145
Griffith, A.A.      271 282
Grioli, G.      7 79 91
Gubbins, K.E.      116 118 135 145
Guo, F.L.      275 281
Gurtin, M.E.      8 38 53 65 67 73 76 88 91 260 282
Hack, J.E.      166 189 288
Hagen-Poiseuille flow      132 135
Hagood, N.W.      239 280
Haile, J.M.      97 99 143
Hall — Petch effect      79
Han, J.C.      186 215 284 287
Han, P.      258 259 287 288
Han, X.L.      249 284
Hancock, G.J.      293 300 301 350
Hao, T.H.      177 238 273 282
Harada, S.      257 279
Harley, J.C.      135 143
Haye, M.J.      118 143
Heinbuch, U.      135 143
Herbiet, R.      242 280 282
Herrmann, G.      156 285
Herrmann, H.J.      53 91
Herrmann, K.P.      209 219 220 277 282
Hess, J.L.      325 352
Heyer, V.      262 268 282 286
Heyes, D.M.      129 130 143
Hihara, E.      103 142
Hill, M.D.      258 282
Hill, R.      242 283
Hill, S.J.      348 352
Homola, A.M.      131 142
Hoover, W.G.      103 143
Horn, C.L.      238 283
Hou, P.F.      275 281
Hovering, chalcid wasp      294
Hsieh, J.Y.      112 143
Huang, J.H.      220 228 283
Huang, S.H.      220 287
Huang, Y.      135 143
Huber, J.E.      239 242 283
Hughes, T.J.R.      7 92 93
Hui, C.Y.      220 221 225 228 229 230 283
Hutchinson, J.W.      68 79 90 91 242 283
Hwang, C.C.      112 143
Hwang, C.S.      258 282
Hwang, H.J.      258 287
Hwang, J.W.      83 91
Hwang, K.C.      239 280 284
Hwang, S.C.      239 240 283
Hwu, C.      186 284
Hybrid analytical-numerical method      331—333
Hydrodynamic theories, aquatic and aerial locomotion      296—299
Hypersingular boundary integral equations      232—233
Iesan, D.      157 283
Image dislocation method      189—190
In-plane coordinate rotation matrix      165—166
Indekeu, J.O.      134 145
Indentation fracture technique, PZT ceramics      260—263
Inertia effects on standard and substructural balances      57—59
Inertia effects pertaining to macroscopic motion      21—26
Initial conditions for liquid and vapor phases      100
Initial conditions, bubble formation and      118—119
Intensity factors at crack tip      181—182 232—233
Intensity factors, electric displacement      184 213—214 233—234 252—253
Intensity factors, slit crack electrical and mechanical fields      178—183
Intensity factors, strain      204
Intensity factors, stress      213—214 230—231 273—274
Interactions, balance at crack tip      56—57
Interactions, balance from invariance of outer power      16—21
Interactions, measures of      12—16 41
Interactions, surface configurational      47
Interface cracks, contact zone model      219—220
Interface cracks, curve-shaped      218
Interface cracks, electrically impermeable      277
Interface cracks, finite, under crack face loading      216—217
Interface cracks, impermeable, semi-infinite      210—215
Interface cracks, permeable      218
Interface cracks, piezoelectric ceramics      209
Interfaces      see also “Discontinuity surfaces”
Interfaces, cylindrical      see “Cylindrical interfaces”
Interfaces, evolution in materials with substructure      42—53
Interfaces, geometry      33—35
Interfaces, MD simulations, liquid-liquid      122—130
Interfaces, MD simulations, liquid-solid      130—136
Interfaces, MD simulations, liquid-vapor      103—122
Interfaces, planar      see “Planar interfaces”
Interfaces, spherical      see “Spherical interfaces”
Interfacial tension, planar interfaces: liquid-solid      134
Intermolecular potentials, classic MD simulation      97—99
Internal dissipation inequality      64
Internal energy, piezoelectric materials      152
Inviscid irrotational flow theory      297 316
Ioakimidis, N.I.      257 283
Irwin, G.R.      199 271 283
Ishimaru, M.      134 143
Isothermal potential energies, piezoelectric      154
Isotopic mixtures, liquid      128—130
Israelachvili, J.N.      111 127 131 142 143
J integral in terms of intensity factors      214
J integral, for conductive cracks      271
J integral, modified expression of      65—66
J integral, path-independent      156
Jame, R.D.      38 91
Jensen, B.      139 143
Jiang, L.Z.      186 258 261 283 284
Jiang, Q.Y.      83 93 242 257 283 288
Jona, F.      83 91 283
Jones, R.T.      326 350
Kakimoto, K.      134 143
Kalikmanov, V.I.      118 143
Kalman, T.P.      325 350
Kambe, T.      298 350
Kamiya, N.      265 284
Karihaloo, B.L.      209 280
Karplus, M.      103 142
Karpouzian, G.      298 351
Kataoka, Y.      112 144 146
Katz, J.      325 351
Kawano, S.      120 121 143
Kay’s rule      129
Keblinski, P.      135 145
Keller, S.R.      293 334 335 336 351
Kelvin’s circulation theorem      323—324 330
Kenneth, L.      8 90
Kerl, K.      129 143
Khutoryansky, N.      175 286
Kies, J.A.      199 283
Kim, K.S.      167 286
Kim, S.J.      239 257 283
Kimura, T.      132 138 144
Kinematics, fluid particles      320
Kinematics, planar moving cracks      54—56
kinetic energy density      21—25
Kingon, A.I.      239 280
Kinjo, T.      118 143
Kirkwood, J.G.      106 143
Kiselev, S.P.      25 91
Kishimoto, K.      68 88 159 283
Knops — Villaggio’s effect      32
Knops, R.J.      32 91
Knowles, J.K.      38 53 88
Koch, S.W.      119 143
Koepke, B.G.      257 284
Koga, K.      118 143
Kogan, L.      220 221 225 228 229 230 283
Kohn, R.V.      8 91 92
Kolleck, A.      264 284
Kollman, P.A.      103 145
Koplik, J.      120 135 138 143 145 146
Kotake, S.      103 143 145
Kramarov, S.O.      256 284
Kremer, K.      99 144
Krishnaprasad, P.S.      7 93
Kronecker delta      157 238
Kuang, Z.B.      209 286
Kudryavtsev, B.A.      152 175 285
Kuessner, H.G.      326 351
Kuethe, A.M.      299 351
Kumar, S.      235 284
Kuo, C.-M.      162 165 166 171 179 183 209 211 212 214 284 287
Kurashige, T.      138 144
Kuroki, M.      103 143
Kutta condition      305 307—308 312 315 317 321 325—327 330
Kuvshinskii, E.V.      7 88
Lacasse, M.      110 145
Lagrangian densities, elastic materials with substructure      27—30
Lam, C.G.      325 326 351
1 2 3 4 5
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå