Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Pedicchio M. C., Tholen W. — Categorical Foundations: Special Topics in Order, Topology, Algebra, and Sheaf Theory
Pedicchio M. C., Tholen W. — Categorical Foundations: Special Topics in Order, Topology, Algebra, and Sheaf Theory



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Categorical Foundations: Special Topics in Order, Topology, Algebra, and Sheaf Theory

Авторы: Pedicchio M. C., Tholen W.

Аннотация:

Researchers, teachers and graduate students in algebra and topology — familiar with the very basic notions of category theory — will welcome this categorical introduction to some of the key areas of modern mathematics, without being forced to study category theory. Rather, each of the eight largely independent chapters analyzes a particular subject, revealing the power and applicability of the categorical foundations in each case.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2003

Количество страниц: 417

Добавлена в каталог: 22.10.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Reflexive relation      I.14 IV.167
Regular category      IV.177 VI.279 VII.336
Regular element      VII.334
Regular epimorphism      IV.171 VIII.360
Regular epimorphism, stably      VIII.361
Regular generator      VI.271 278
Regular ideal      II.92
Regular locale      II.78
Regular open set      II.66
Regular projective cover      VII.336
Regular projective object      VI.282 VII.336
Regular pullback square      VIII.367
Relation      I.11 IV.166 VI.279
Relation, antisymmetric      I.16
Relation, Chasles      IV.191 194
Relation, coarse      IV.168
Relation, composite      I.11
Relation, difunctional      VI.291
Relation, discrete      IV.168
Relation, equivalence      IV.167 VI.280
Relation, equivalence, effective      IV.169 VI.281 VIII.367
Relation, equivalence, stably effective      VIII.369
Relation, interpolative      II.78
Relation, kernel      IV.169
Relation, meet-stable      II.67
Relation, reflexive I.14      IV.167
Relation, symmetric      IV.167
Relation, transitive I.14      IV.167
Relation, way-below      II.94
Replete full suborder      I.32
Restriction (of a morphism)      III.110
Rewriting terms      V.247
Richter — Tholen Theorem      III.147
Right adjoint      I.12 15
Ring of sets, complete      I.46
S-sorted algebraic category      VI.277
Saturated element      II.66
Schreier theorem      V.248
Scott open      II.96
Scott topology      II.96
Section, continuous      VII.315
Section, local      VII.315
Semilattice homomorphism      II.70
Semilattice, join-      I.20
Semilattice, meet-      I.20 II.70
Separable algebra      VIII.399
Separable, finite, extension      VIII.398
Sequence, exact      IV.198
Sheaf      VII.316
Sheaf for a Grothendieck topology      VII.329
Sheaf for a Lawvere — Tierney topology      VII.331
Short Five Lemma      IV.196
Sieve      VII.328
Simplicial kernel      IV.189
Skeletal category      I.10
Small generator      VII.345
Space, $T_{D}$-      II.66
Space, base      VIII.401
Space, covering      VIII.402
Space, extension      VIII.401
Space, H-closed      III.131
Space, path-connected      VIII.402
Space, sober      II.54
Space, total      VII.319
span      I.11
Spatial locale      II.58
Spatial topos      VII.334
Spectrum of a locale      II.56
Split epimorphism      IV.171 VIII.360
Split fork      V.223
Split Short Five Lemma      IV.186
Stable under intersection      III.109
Stable under multiple pullback      III.109
Stable under pullback      III.108
Stable under restriction      III.119
Stably effective equivalence relation      VIII.369
Stalk      VII.319
Stone — Cech compactification      II.93 III.134 159
Strict 2-monad      V.258
Strict initial object      VI.285
Strict monoidal category      V.258
Strong Embedding Principle      V.241
Strong epimorphism      IV.170 VIII.361
Strong epimorphism, stably      VIII.361
Strong generator      VI.271 278
Subcategory, $\mathcal{F}$-cowellpowered      III.159
Subcategory, reduced      V.240
Subfit locale      II.77
Sublocale      II.60
Sublocale closure      II.64
Sublocale image      II.69
Sublocale preimage      II.74
Sublocale set      II.68
Sublocale, closed      II.62
Sublocale, dense      II.64
Sublocale, open      II.62
Sublocales, equivalent      II.61
Subobject      III.109
Subobject classifier      VII.330
Subobject, $\mathcal{F}$-open      III.137
Subobject, dense      VII.324
Subobject, Zariski closed      III.116
Subset      I.11
Sum, direct      IV.201
Supremum      I.21
Surjection of locales      II.59
Symmetric relation      IV.167
Theorem, Barr — Kock      IV.176
Theorem, Birkhoff — Witt      V.247
Theorem, Clementino — Tholen      III.141
Theorem, Day — Kelly      III.152
Theorem, Factorization      II.68
Theorem, Frolik      III.159
Theorem, Isbell Density      II.65
Theorem, Johnstone      III.139
Theorem, Joyal — Tierney      V.235
Theorem, Kuratowski — Mrowka      II.91 III.120
Theorem, Lawvere Characterization      VI.283
Theorem, Maltsev      VI.292
Theorem, Richter — Tholen      III.147
Theorem, Schreier      V.248
Theorem, Tychonoff      III.158
Theorem, Vermeulen      III.122
Theorem, Whitehead      III.148
Theory, algebraic      VI.270
Theory, algebraic, essentially      VI.299
Theory, Lawvere      VI.270
Topology, Alexandroff      I.35
Topology, Grothendieck      VII.328
Topology, Lawvere — Tiemey      VII.330
Topology, Scott      II.96
Topos      I.8 III.114 VI.282
Topos, Boolean      I.7
Topos, elementary      I.5 VII.330
Topos, Grothendieck      VII.333
Topos, localic      VII.334
Topos, spatial      VII.334
Torsion-free Abelian group      IV.180
Total space      VII.319
Transitive relation      I.14 IV.167
Triple, Kleisli      V.249
Truncated nerve functor      VIII.393
Tychonoff theorem      III.158
Unique path lifting property      VIII.404
Universal closure operator      III.114 VII.323
Universal quotient map      III.150
Upper bound      I.21
Upper bound, least      I.21
UpSet      I.37
Variety of general algebras      V.229
Variety, algebraic      IV.179
Vermeulen Theorem      III.122
Way-below relation      II.94
Weak colimit      VI.292
Weak limit      VI.292 VII.337
Whitehead theorem      III.148
Yoneda embedding, 2-dimensional      VIII.390
Zariski closed subobject      III.116
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте