Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Pedicchio M. C., Tholen W. — Categorical Foundations: Special Topics in Order, Topology, Algebra, and Sheaf Theory
Pedicchio M. C., Tholen W. — Categorical Foundations: Special Topics in Order, Topology, Algebra, and Sheaf Theory



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Categorical Foundations: Special Topics in Order, Topology, Algebra, and Sheaf Theory

Авторы: Pedicchio M. C., Tholen W.

Аннотация:

Researchers, teachers and graduate students in algebra and topology — familiar with the very basic notions of category theory — will welcome this categorical introduction to some of the key areas of modern mathematics, without being forced to study category theory. Rather, each of the eight largely independent chapters analyzes a particular subject, revealing the power and applicability of the categorical foundations in each case.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2003

Количество страниц: 417

Добавлена в каталог: 22.10.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Fractions, category of      VII.325
Fractions, left calculus of      VII.325
Frame      I.42 II.52
Frame congruence      II.61
Frame homomorphism      II.52
Frobenius identity      II.84
Frobenius Identity, co-      II.87
Frolik Theorem      III.159
Full suborder      I.32
Full suborder, coreflective      I.32
Full suborder, reflective      I.32
Full suborder, replete      I.32
Fully faithful function      I.31
Functor, comparison      V.225 VI.276
Functor, comparison, Eilenberg — Moore      V.222
Functor, comparison, Grothendieck’s      VIII.385
Functor, downset      II.70
Functor, equivalence      I.10
Functor, filtering      VII.352
Functor, left covering      VII.350
Functor, left exact      VII.322
Functor, monadic      V.222
Functor, nerve      VIII.393
Functor, nerve, truncated      VIII.393
Functor, rank      V.241
Fundamental group(oid)      VIII.403
Galois connection      I.15
Galois extension of a commutative ring      VIII.399
Galois, Grothendieck’s form of the fundamental theorem of, theory      VIII.399
Gelfand duality      II.51
Generalized local-to-global constructions      VIII.402
Generator, dense      VI.300 VII.347
Generator, regular      VI.271 278
Generator, small      VII.345
Generator, strong      VI.271 278
Geometric morphism      VII.335
Glueing      VII.316
Graph      VI.274
Graph of a function      I.11
Graph, reflexive      VI.274
Grothendieck topology      VII.328
Grothendieck topology, sheaf for a      VII.329
Grothendieck topos      VII.333
Grothendieck’s (original) descent theory      VIII.381
Grothendieck’s cocycle condition      VIII.383
Grothendieck’s comparison functor      VIII.385
Grothendieck’s form of the fundamental theorem of Galois theory      VIII.399
Group, internal      IV.191
Group, torsion-free abelian      IV.180
H-closed space      III.131
Hausdorff locale      II.80
Hausdorff locale, strongly      II.80
Hereditary closure operator      III.156
Heyting algebra      I.24 II.53
Heyting implication      II.53 54 67
Heyting lattice      I.24
Heyting lattice, complete      I.42
Hofmann — Lawson Duality      II.97
Hom-sets      I.10
Ideal      II.92
Ideal, regular      II.92
Idempotent closure operator      III.156
Idempotent monad      V.257 265
Identity, co-Frobenius      II.87
Identity, Frobenius      II.84
Image      III.110
Image of a sublocale      II.69
Image, inverse      III.110
Infimum      I.21
Infinite distributive law      II.52
Initial object, strict      VI.285
Internal abelian group      IV.191
Internal group      IV.191
Internal monoid      IV.191
Interpolative relation      II.78
Inverse image      III.110
Irreducible element, meet-      II.54
Isbell conjugation adjunction      I.38
Isbell Density Theorem      II.65
Isbell — Henriksen characterization      III.135
j-closed monomorphism      VII.331
j-dense monomorphism      VII.331
j-sheaf      VII.331
Janelidze’s criterion      V.235
Johnstone Theorem      III.139
Join-semilattice      I.20
Jointly strongly epic pair of arrows      IV.185
Joyal — Tierney Theorem      V.235
K-algebraic object      III.131
Kan extension      VII.348
Kernel      IV.172
Kernel relation      IV.169
Kernel, simplicial      IV.189
Kleisli category      V.220 251
Kleisli object      V.255
Kleisli triple      V.249
Kuratowski — Mrowka Theorem      II.91 III.120
Lattice      I.20
Lattice, complete, completely distributive      I.44
Lattice, complete, constructively completely distributive      I.44
Lattice, continuous      II.95
Lattice, distributive      I.23
Lattice, Heyting      I.24
Lawvere Characterization Theorem      VI.283
Lawvere theory      VI.270
Lawvere — Tierney topology      VII.330
Least upper bound      I.21
Left adjoint      I.12 15
Left calculus of fractions      VII.325
Left covering      VI.296
Left covering functor      VII.350
Left exact functor      VII.322
Lemma, short five      IV.196
Lemma, Short Five, Split      IV.186
Lextensive category      VII.342
Lie algebra      V.246
Limit, weak      VI.292 VII.337
Linear category      IV.200
Local $\mathcal{F}$-homeomorphism      III.139
Local homeomorphism      VII.315
Local section      VII.315
Locale      I.42 II.54 VII.334
Locale compactification      II.94
Locale cover      II.83
Locale, compact      II.83
Locale, compactifiable      II.94
Locale, completely regular      II.78
Locale, conjunctive      II.77
Locale, fit      II.82
Locale, Hausdorff      II.80
Locale, Hausdorff, strongly      II.80
Locale, Lindeloef      II.83
Locale, locally compact      II.95
Locale, normal      II.79
Locale, point of a      II.55
Locale, regular      II.78
Locale, spatial      II.58
Locale, subfit      II.77
Locales, closed map of      II.83
Locales, co-dense map of      II.82
Locales, dense map of      II.64
Locales, map of      II.54
Locales, open map of      II.83 III
Locales, proper map of      II.88
Locales, surjection of      II.59
Localic map      II.54
Localic map, closed      II.83
Localic map, co-dense      II.82
Localic map, dense      II.64
Localic map, open      II.83 III.138
Localic map, proper      II.88
Localic topos      VII.334
localization      VI.297 VII.322
Localization, finitary      VI.297
Locally $\mathcal{F}$-Hausdorff object      III.153
Locally $\mathcal{F}$-perfect morphism      III.140
Locally $\mathcal{F}$-separated morphism      III.153
Locally $\mathcal{F}$-separated object      III.153
Locally compact locale      II.95
Locally finitely presentable category      VI.298
Maltsev category      IV.189 VI.290
Maltsev category, naturally      VI.294
Maltsev Theorem      VI.292
MAP      I.12
Map, $\mathcal{F}$-biquotient      III.150
Map, clopen      III.115
Map, closed      III.112
Map, descent      III.150
Map, etale      VII.315
Map, universal quotient      III.150
Meet-irreducible element      II.54
Meet-semilattice      I.20 II.70
Meet-stable relation      II.67
Model      VI.270
Monad      V.216
Monad of state transformers      V.252
Monad, commutative      V.257 261
Monad, finitary      VI.275
Monad, idempotent      V.257 265
Monad, monicity of the, unit      V.245
Monad, strict 2-      V.258
Monadic category      V.222
Monadic category over Set      V.234
Monadic descent theory      VIII.381
Monic span      I.11
Monoid      V.215 258
Monoid, commutative      V.262
Monoid, internal      IV.191
Monoidal categories of ordinals      V.259
Monoidal category      V.215
Monomorphism, extremal —      II.60
Monomorphism, normal      IV.181
Monomorphism, pure      V.237
Morphism, $\mathcal{F}$-antiperfect      III.136
Morphism, $\mathcal{F}$-closed      III.112
Morphism, $\mathcal{F}$-dense      III.113
Morphism, $\mathcal{F}$-exponentiable      III.148
Morphism, $\mathcal{F}$-final      III.143
Morphism, $\mathcal{F}$-initial      III 134
Morphism, $\mathcal{F}$-open      III.136
Morphism, $\mathcal{F}$-perfect      III.129
Morphism, $\mathcal{F}$-proper      III.118
Morphism, $\mathcal{F}$-quotient      III.145
Morphism, $\mathcal{F}$-separated      III.124
Morphism, $\mathcal{F}$-Tychonoff      III.132
Morphism, absolutely $\mathcal{F}$-closed      III.132
Morphism, allowable      V.242
Morphism, bidense      VII.324
Morphism, descent      VIII.375
Morphism, effective descent      V.237 VIII.375
Morphism, geometric      VII.335
Morphism, locally $\mathcal{F}$-perfect      III.140
Morphism, locally $\mathcal{F}$-separated      III.153
Morphism, separated      III.124
Multi-sorted category      VI.277
Naturally Maltsev category      VI.294
Negation      I.24 II.53
Nerve functor      VIII.393
Nerve functor, truncated      VIII.393
Normal epimorphism      VIII.360
Normal locale      II.79
Normal monomorphism      IV.181
Nucleus      II.67
Nucleus, pre-      II.89
Object, $\mathcal{F}$-compact      III.119
Object, $\mathcal{F}$-discrete      III.139
Object, $\mathcal{F}$-exponentiable      III.151
Object, $\mathcal{F}$-Hausdorff      III.126
Object, $\mathcal{F}$-separated      III.126
Object, $\mathcal{F}$-Tychonoff      III.131
Object, abelian      IV.194
Object, absolutely $\mathcal{F}$-closed      III.131
Object, abstractly finite      VI.289
Object, connected      VII.353
Object, decidable      III.128
Object, effective projective      VI.303
Object, Eilenberg — Moore      V.253
Object, finitely presentable      VI.282
Object, G-reducible      V.240
Object, Kleisli      V.255
Object, locally $\mathcal{F}$-compact      III.140
Object, locally $\mathcal{F}$-compact Hausdorff      III.140
Object, locally $\mathcal{F}$-Hausdorff      III.153
Object, locally $\mathcal{F}$-separated      III.153
Object, reduced      V.240
Object, regular projective      VI.282
Object, strict initial      VI.285
Open map of locales      II.83 III.138
Open map of topological spaces      III.137
Open sublocale      II.62
Order, discrete      I.29
Ordered set      I.14
Ordered set, complete      I.36
Ordered set, discrete      I.19
Ordered set, partially      I.16
Ordered set, pre-      I.16
Orthogonal      III 107
Pair of arrows, jointly strongly epic      IV.185
Pair, contractible      V.224
Pair, G-contractible coequalizer      V.225
Part      I.9
Partial product      III.155
Partially ordered set      I.16
Path-connected space      VIII.402
Point of a locale      II.55
Pointed category      IV.172
Pointed objects, fibration of      IV.184
Precategoiy      VIII.390
Preimage      III.110
Preimage of a sublocale      II.74
Prenucleus      II.89
Preordered set      I.16
Presheaf      IV.179 VII.316
Pretopology      VII.338
Principle of Connectedness      V.241
Principle, Diamond      V.240
Principle, Strong Embedding      V.241
Projective object, effective      VI.303
Projective object, regular      VI.282 VII.336
Proper localic map      II.88
Protomodular category      IV.184 VI.294
Pseudo-complement      I.24 II.53
Pseudo-equalizer diagram      VIII.389
Pseudo-equalizer, reflexive, diagram      VIII.389
Pullback      I.8
Pure monomorphism      V.237
Quasi-algebraic category      VI.288
R-related element      I.11
R-saturated element      II.66
Rank functor      V.241
Reduced object      V.240
Reduced subcategory      V.240
Reflective full suborder      I.32
Reflector      I.32
Reflects $\mathcal{F}$-density      III.137
Reflects $\mathcal{F}$-quotient maps      III.148
Reflexive coequalizer      VI.274
Reflexive graph      VI.274
Reflexive lax equalizer diagram      VIII.388
Reflexive pseudo-equalizer diagram      VIII.389
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте