Авторизация
Поиск по указателям
Shafer G. — The Art of Causal Conjecture
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: The Art of Causal Conjecture
Автор: Shafer G.
Аннотация: In The Art of Causal Conjecture, Glenn Shafer lays out a new mathematical and philosophical foundation for probability and uses it to explain concepts of causality used in statistics, artificial intelligence, and philosophy. The various disciplines that use causal reasoning differ in the relative weight they put on security and precision of knowledge as opposed to timeliness of action. The natural and social sciences seek high levels of certainty in the identification of causes and high levels of precision in the measurement of their effects. The practical sciences — medicine, business, engineering, and artificial intelligence — must act on causal conjectures based on more limited knowledge. Shafer's understanding of causality contributes to both of these uses of causal reasoning. His language for causal explanation can guide statistical investigation in the natural and social sciences, and it can also be used to formulate assumptions of causal uniformity needed for decision making in the practical sciences. Causal ideas permeate the use of probability and statistics in all branches of industry, commerce, government, and science. The Art of Causal Conjecture shows that causal ideas can be equally important in theory. It does not challenge the maxim that causation cannot be proven from statistics alone, but by bringing causal ideas into the foundations of probability, it allows causal conjectures to be more clearly quantified, debated, and confronted by statistical evidence.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1996
Количество страниц: 511
Добавлена в каталог: 22.10.2010
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Puzzle of two aces 102
Quasi ordering 394
Rabiner, L.R. 369
Raiffa, Howard 7 62 249
Randomized experiment 320—322
Ranta, Aarne 373 375
Rao, C.R. 423
refinement 275—297
Refinement of event tree 283
Refinement of martingale 289
Refinement of martingale tree 290
Refinement of probability tree 290
Refinement, constructive 281
refining 283
Reflexivity 393
Regression 412—415 see
Regression coefficient 419
Regression coefficient, causal interpretation 314 335
Regression coefficient, standardizing 344
Regression toward mediocrity 325
Regression, error 414
Reichenbach, Hans, principle of the common cause 121
Reichenbach, Hans, probabilistic causation 153
Reichenbach, Hans, screening off 162—165
Relevance diagrams 466—475
Relevance diagrams, bubbled 475—476
Relevance diagrams, causal interpretation 22—23 346—352
Relevance diagrams, initial subgraph 347 471
Resolution at a situation 37
Resolution for families of Moivrean variables 53
Resolution for Moivrean events 37
Resolution for Moivrean variables 50 244
Resolution for partitions 52
Resolvent 54 246
Resolving cut for families of Moivrean variables 53
Resolving cut for Moivrean events 41
Resolving cut for Moivrean variables 50 245
Resolving cut for partitions 52
Robins, James 330
Rockafellar, R. Tyrrell 264
Rodgers, R. 22
Root 386
Rosenbaum, Paul R. 321 330 336
Rosenstein, Joseph G. 235
Roy, H. Scott 360
Rubin, Donald B. 318 321 322
Salmon, Wesley C. 303
Sample space 5 32 235 399
Sample-space framework, inadequacy 6—7
Sample-space framework, objectivity 328
Sample-space framework, rigor 61
Sampling error 329
Sampling frame 329
Scheines, Richard see "Spirtes Peter"
Schlaifer, Robert 330
Schmidt, David A. 371
Score function 216 225
Scrap value 270
Screening off 162—165
Selection vs. causation 320
Seneta, Eugene 453 456
Shachter, Ross D. 366
Shafer, Glenn, Bayes's argument in terms of event trees 42 62
Shafer, Glenn, conditional probability puzzles 111
Shafer, Glenn, novelty of conditional probability 104
Shafer, Glenn, other methods for handling uncertainty 106
Shafer, Glenn, probability story as standard of comparison 9 109 110
Shenoy, Prakash P. 476
Shiryayev, A.N. 399
SIGN see also "Formal sign" "Linear
Sign coefficient 216 223
Sign for families of variables 227
Sign for Moivrean events 154
Sign for Moivrean variables 12 219—222
Sign in martingale tree 258 268
Sign, negative 154 219
Sign, positive 10 12 154 163 215 219
Sign, scored 216 225—227
Sign, tracking 154 163 219
Sign, weak 159
Sign, weak scored 225
Simon, Herbert A. 378 472
Simple Humean event 34 43 246
Simple path 385
simplification 283
Simplification of catalog 289
Simplification of martingale 289
Simplification of path 287
Simplification, skeletal 369—371
simplifying 285
Simultaneity for families of Moivrean variables 53
Simultaneity for Moivrean events 43
Simultaneity for partitions 52
Simultaneous equations models 464
Singer, Burton 357
Singular causal diagram 147—149
Singular diagram 394—395
Singular diagram, complete 231 395
Singular diagram, Hasse 230 395
Situation 15—16 33 233
Situation semantics 375
Situation, chance 249 265
Situation, decision 249 265
Situation, divergent 233
Situation, initial 33 233
Situation, intermediate 265
Situation, terminal 33
Situational tree 35 283
Skeletal simplification 368—371
Skeleton 368
Smith, Adrian F.M. 110
Smith, James Q. 366
Sobel, Michael E. 345 357
Speech recognition 369
Spiegelhalter, David J. 366 454
Spirtes, Peter, automated model search 454
Spirtes, Peter, cycles 462
Spirtes, Peter, frequency of citation 22
Spirtes, Peter, intervention 345
Spirtes, Peter, lung damage 351
Spirtes, Peter, Moivrean variables as causes 338
Spohn, Wolfgang, common causes 133
Spohn, Wolfgang, events as causes 13 153
Spohn, Wolfgang, using stochastic processes to understand causality 6
Spohn, Wolfgang, variables as causes 189
Spurious cause 162
Stability under refinement, fails for weak independence concepts 121
Stability under refinement, holds for strong independence concepts 292
Standard deviation 404
Statistical adjustment 328
Stigler, Stephen M. 325
Stochastic dominance 400
Stochastic process 402
Stochastic process, abstract 54 366—368 477—483
Stochastic process, embedding in event tree 55
Stochastic process, embedding in sample space 480—482
Stochastic process, generalized abstract 480
Stochastic process, scaled 402
Stochastic subsequence 143—147 201—202
Stochastic subsequence in mean 206
Stopping transformation 40 80 237
Strategy 93 253
Strong tracking diagram 339
Strotz, Robert H. 464
Structural equation model 473
Structural equation model, causal interpretation 352
Subsequence see also "Stochastic subsequence"
Subsequence for Moivrean events 42
Subsequence for partitions 52
Suppes, Patrick 153 159 162
Supply and demand 355—356 464—466
Tail of Humean chain 45
Tail of Humean event 45 246
Tail of probability conditional 478
Tail of simple Humean event 43
Tatman, J.A. 366
Terminal node 386
Timing in event tree 56—60
To affect in mean 174
To affect, martingale 258
To affect, Moivrean event 118
To affect, Moivrean variable 174
To affect, Moivrean variable in martingale tree 267
To evaluate 79 265
To explain 304
To influence by experiment or situation 114 170 182 267
To influence by Humean event 118
To influence in mean 170 182
To influence on martingale 258
To influence on partition 179
To probabilize 267
To track 268 335
To track by family of variables 212—214
To track by martingale 258
To track by Moivrean event 10 137
To track by partition 210—212
To track in mean 12 189 204 335
To track linearly 189 207
To track strongly 12 189 192—198 268
To track, stability under refinement 292
Total effect 458
Total effect, causal interpretation 345
Track see "To track"
Tracking coefficient 208
Tracking probability 139 194
Tracking sign 154 163 219
Transitivity 393
Transitivity, fails for stochastic subsequence in mean 206
Transitivity, fails for strong tracking 195
Transitivity, holds for linear subsequence 209
Transitivity, holds for stochastic subsequence 201
Transitivity, holds for tracking under strict positivity 145
Transitivity, philosophically attractive 161
TREE 385 see "Probability
Trek 457
Tukey, John 344 462
Tversky, Amos 110
Type theory 371—378
Uncorrelatedness 12 171 267
Uncorrelatedness diagram 341
Uncorrelatedness for families of variables 186
Uncorrelatedness for martingales 258
Uncorrelatedness for more than two variables 174
Uncorrelatedness, basic role of 186 449—450
Uncorrelatedness, mixed 438—440
Uncorrelatedness, modulo 177
Uncorrelatedness, modulo in mean 177
Uncorrelatedness, partial 441—443
Uncorrelatedness, sample-space 14 404 437
Uncorrelatedness, stability under refinement 292
Uncorrelatedness, weak 174 258 267
Undirected graph 385
Unified probability story 6—7 91 108—110
Unpredictability diagram 341
Unpredictability in mean 171
Unpredictability in mean, sample space 433—437
Unpredictability in mean, weak 174
Updating 360
Upper expectation 269
Upper expected value 269
Upper probability 272
Uspenskii, V.A. 111
Validation 106—108
Value partition for family of Moivrean variables 53
Value partition for family of variables in sample space 402
Value partition for Moivrean variable 50
Value partition for variable in sample space 400
van Schooten, Frans 379
Variable 400 see "Moivrean
Variable, abstract 477
Variable, function of 400
Variable, latent 460
Variable, numerical 400 477
Variable, value of 400
Variance 77 404
Verma, Thomas S. 338 454 472
Ville, Jean 262
von Mises, Richard 111
Vovk, Vladimir, adequacy of decision trees 274
Vovk, Vladimir, central limit theorem 111
Vovk, Vladimir, constructive refinement 281
Vovk, Vladimir, monitoring 360
Vovk, Vladimir, nonregularity 242
Wainer, Howard 322
Wermuth, Nanny 476
Williams, David 399
Wold, Herman O.A. 464
Wonnacott, Ronald J. 62
Wonnacott, Thomas H. 62
Wright's theorem 457
Wright, Sewall 344 453 457 462
Zero probabilities 70—72
Реклама