Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Shafer G. — The Art of Causal Conjecture
Shafer G. — The Art of Causal Conjecture



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: The Art of Causal Conjecture

Автор: Shafer G.

Аннотация:

In The Art of Causal Conjecture, Glenn Shafer lays out a new mathematical and philosophical foundation for probability and uses it to explain concepts of causality used in statistics, artificial intelligence, and philosophy. The various disciplines that use causal reasoning differ in the relative weight they put on security and precision of knowledge as opposed to timeliness of action. The natural and social sciences seek high levels of certainty in the identification of causes and high levels of precision in the measurement of their effects. The practical sciences — medicine, business, engineering, and artificial intelligence — must act on causal conjectures based on more limited knowledge. Shafer's understanding of causality contributes to both of these uses of causal reasoning. His language for causal explanation can guide statistical investigation in the natural and social sciences, and it can also be used to formulate assumptions of causal uniformity needed for decision making in the practical sciences. Causal ideas permeate the use of probability and statistics in all branches of industry, commerce, government, and science. The Art of Causal Conjecture shows that causal ideas can be equally important in theory. It does not challenge the maxim that causation cannot be proven from statistics alone, but by bringing causal ideas into the foundations of probability, it allows causal conjectures to be more clearly quantified, debated, and confronted by statistical evidence.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1996

Количество страниц: 511

Добавлена в каталог: 22.10.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Puzzle of two aces      102
Quasi ordering      394
Rabiner, L.R.      369
Raiffa, Howard      7 62 249
Randomized experiment      320—322
Ranta, Aarne      373 375
Rao, C.R.      423
refinement      275—297
Refinement of event tree      283
Refinement of martingale      289
Refinement of martingale tree      290
Refinement of probability tree      290
Refinement, constructive      281
refining      283
Reflexivity      393
Regression      412—415 see
Regression coefficient      419
Regression coefficient, causal interpretation      314 335
Regression coefficient, standardizing      344
Regression toward mediocrity      325
Regression, error      414
Reichenbach, Hans, principle of the common cause      121
Reichenbach, Hans, probabilistic causation      153
Reichenbach, Hans, screening off      162—165
Relevance diagrams      466—475
Relevance diagrams, bubbled      475—476
Relevance diagrams, causal interpretation      22—23 346—352
Relevance diagrams, initial subgraph      347 471
Resolution at a situation      37
Resolution for families of Moivrean variables      53
Resolution for Moivrean events      37
Resolution for Moivrean variables      50 244
Resolution for partitions      52
Resolvent      54 246
Resolving cut for families of Moivrean variables      53
Resolving cut for Moivrean events      41
Resolving cut for Moivrean variables      50 245
Resolving cut for partitions      52
Robins, James      330
Rockafellar, R. Tyrrell      264
Rodgers, R.      22
Root      386
Rosenbaum, Paul R.      321 330 336
Rosenstein, Joseph G.      235
Roy, H. Scott      360
Rubin, Donald B.      318 321 322
Salmon, Wesley C.      303
Sample space      5 32 235 399
Sample-space framework, inadequacy      6—7
Sample-space framework, objectivity      328
Sample-space framework, rigor      61
Sampling error      329
Sampling frame      329
Scheines, Richard      see "Spirtes Peter"
Schlaifer, Robert      330
Schmidt, David A.      371
Score function      216 225
Scrap value      270
Screening off      162—165
Selection vs. causation      320
Seneta, Eugene      453 456
Shachter, Ross D.      366
Shafer, Glenn, Bayes's argument in terms of event trees      42 62
Shafer, Glenn, conditional probability puzzles      111
Shafer, Glenn, novelty of conditional probability      104
Shafer, Glenn, other methods for handling uncertainty      106
Shafer, Glenn, probability story as standard of comparison      9 109 110
Shenoy, Prakash P.      476
Shiryayev, A.N.      399
SIGN      see also "Formal sign" "Linear
Sign coefficient      216 223
Sign for families of variables      227
Sign for Moivrean events      154
Sign for Moivrean variables      12 219—222
Sign in martingale tree      258 268
Sign, negative      154 219
Sign, positive      10 12 154 163 215 219
Sign, scored      216 225—227
Sign, tracking      154 163 219
Sign, weak      159
Sign, weak scored      225
Simon, Herbert A.      378 472
Simple Humean event      34 43 246
Simple path      385
simplification      283
Simplification of catalog      289
Simplification of martingale      289
Simplification of path      287
Simplification, skeletal      369—371
simplifying      285
Simultaneity for families of Moivrean variables      53
Simultaneity for Moivrean events      43
Simultaneity for partitions      52
Simultaneous equations models      464
Singer, Burton      357
Singular causal diagram      147—149
Singular diagram      394—395
Singular diagram, complete      231 395
Singular diagram, Hasse      230 395
Situation      15—16 33 233
Situation semantics      375
Situation, chance      249 265
Situation, decision      249 265
Situation, divergent      233
Situation, initial      33 233
Situation, intermediate      265
Situation, terminal      33
Situational tree      35 283
Skeletal simplification      368—371
Skeleton      368
Smith, Adrian F.M.      110
Smith, James Q.      366
Sobel, Michael E.      345 357
Speech recognition      369
Spiegelhalter, David J.      366 454
Spirtes, Peter, automated model search      454
Spirtes, Peter, cycles      462
Spirtes, Peter, frequency of citation      22
Spirtes, Peter, intervention      345
Spirtes, Peter, lung damage      351
Spirtes, Peter, Moivrean variables as causes      338
Spohn, Wolfgang, common causes      133
Spohn, Wolfgang, events as causes      13 153
Spohn, Wolfgang, using stochastic processes to understand causality      6
Spohn, Wolfgang, variables as causes      189
Spurious cause      162
Stability under refinement, fails for weak independence concepts      121
Stability under refinement, holds for strong independence concepts      292
Standard deviation      404
Statistical adjustment      328
Stigler, Stephen M.      325
Stochastic dominance      400
Stochastic process      402
Stochastic process, abstract      54 366—368 477—483
Stochastic process, embedding in event tree      55
Stochastic process, embedding in sample space      480—482
Stochastic process, generalized abstract      480
Stochastic process, scaled      402
Stochastic subsequence      143—147 201—202
Stochastic subsequence in mean      206
Stopping transformation      40 80 237
Strategy      93 253
Strong tracking diagram      339
Strotz, Robert H.      464
Structural equation model      473
Structural equation model, causal interpretation      352
Subsequence      see also "Stochastic subsequence"
Subsequence for Moivrean events      42
Subsequence for partitions      52
Suppes, Patrick      153 159 162
Supply and demand      355—356 464—466
Tail of Humean chain      45
Tail of Humean event      45 246
Tail of probability conditional      478
Tail of simple Humean event      43
Tatman, J.A.      366
Terminal node      386
Timing in event tree      56—60
To affect in mean      174
To affect, martingale      258
To affect, Moivrean event      118
To affect, Moivrean variable      174
To affect, Moivrean variable in martingale tree      267
To evaluate      79 265
To explain      304
To influence by experiment or situation      114 170 182 267
To influence by Humean event      118
To influence in mean      170 182
To influence on martingale      258
To influence on partition      179
To probabilize      267
To track      268 335
To track by family of variables      212—214
To track by martingale      258
To track by Moivrean event      10 137
To track by partition      210—212
To track in mean      12 189 204 335
To track linearly      189 207
To track strongly      12 189 192—198 268
To track, stability under refinement      292
Total effect      458
Total effect, causal interpretation      345
Track      see "To track"
Tracking coefficient      208
Tracking probability      139 194
Tracking sign      154 163 219
Transitivity      393
Transitivity, fails for stochastic subsequence in mean      206
Transitivity, fails for strong tracking      195
Transitivity, holds for linear subsequence      209
Transitivity, holds for stochastic subsequence      201
Transitivity, holds for tracking under strict positivity      145
Transitivity, philosophically attractive      161
TREE      385 see "Probability
Trek      457
Tukey, John      344 462
Tversky, Amos      110
Type theory      371—378
Uncorrelatedness      12 171 267
Uncorrelatedness diagram      341
Uncorrelatedness for families of variables      186
Uncorrelatedness for martingales      258
Uncorrelatedness for more than two variables      174
Uncorrelatedness, basic role of      186 449—450
Uncorrelatedness, mixed      438—440
Uncorrelatedness, modulo      177
Uncorrelatedness, modulo in mean      177
Uncorrelatedness, partial      441—443
Uncorrelatedness, sample-space      14 404 437
Uncorrelatedness, stability under refinement      292
Uncorrelatedness, weak      174 258 267
Undirected graph      385
Unified probability story      6—7 91 108—110
Unpredictability diagram      341
Unpredictability in mean      171
Unpredictability in mean, sample space      433—437
Unpredictability in mean, weak      174
Updating      360
Upper expectation      269
Upper expected value      269
Upper probability      272
Uspenskii, V.A.      111
Validation      106—108
Value partition for family of Moivrean variables      53
Value partition for family of variables in sample space      402
Value partition for Moivrean variable      50
Value partition for variable in sample space      400
van Schooten, Frans      379
Variable      400 see "Moivrean
Variable, abstract      477
Variable, function of      400
Variable, latent      460
Variable, numerical      400 477
Variable, value of      400
Variance      77 404
Verma, Thomas S.      338 454 472
Ville, Jean      262
von Mises, Richard      111
Vovk, Vladimir, adequacy of decision trees      274
Vovk, Vladimir, central limit theorem      111
Vovk, Vladimir, constructive refinement      281
Vovk, Vladimir, monitoring      360
Vovk, Vladimir, nonregularity      242
Wainer, Howard      322
Wermuth, Nanny      476
Williams, David      399
Wold, Herman O.A.      464
Wonnacott, Ronald J.      62
Wonnacott, Thomas H.      62
Wright's theorem      457
Wright, Sewall      344 453 457 462
Zero probabilities      70—72
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте