Авторизация 
		         
		        
					
 
		          
		        
			          
		        
			        Поиск по указателям 
		         
		        
			        
					 
		          
		        
			          
			
			         
       		 
			          
                
                    
                        
                     
                  
		
			          
		        
			          
		
            
	     
	    
	    
            
		
                    Shafer G. — The Art of Causal Conjecture 
                  
                
                    
                        
                            
                                
                                    Обсудите книгу на научном форуме    Нашли опечатку? 
 
                                
                                    Название:   The Art of Causal ConjectureАвтор:   Shafer G.  Аннотация:  In The Art of Causal Conjecture, Glenn Shafer lays out a new mathematical and philosophical foundation for probability and uses it to explain concepts of causality used in statistics, artificial intelligence, and philosophy. The various disciplines that use causal reasoning differ in the relative weight they put on security and precision of knowledge as opposed to timeliness of action. The natural and social sciences seek high levels of certainty in the identification of causes and high levels of precision in the measurement of their effects. The practical sciences — medicine, business, engineering, and artificial intelligence — must act on causal conjectures based on more limited knowledge. Shafer's understanding of causality contributes to both of these uses of causal reasoning. His language for causal explanation can guide statistical investigation in the natural and social sciences, and it can also be used to formulate assumptions of causal uniformity needed for decision making in the practical sciences. Causal ideas permeate the use of probability and statistics in all branches of industry, commerce, government, and science. The Art of Causal Conjecture  shows that causal ideas can be equally important in theory. It does not challenge the maxim that causation cannot be proven from statistics alone, but by bringing causal ideas into the foundations of probability, it allows causal conjectures to be more clearly quantified, debated, and confronted by statistical evidence.
Язык:  Рубрика:  Математика /Статус предметного указателя:  Готов указатель с номерами страниц ed2k:   ed2k stats Год издания:  1996Количество страниц:  511Добавлена в каталог:  22.10.2010Операции:  Положить на полку  |
	 
	Скопировать ссылку для форума  | Скопировать ID 
                                 
                             
                        
                     
                 
                                                                
			          
                
                    Предметный указатель 
                  
                
                    
                        Galton, Francis 325 Gambler's ruin 4 379—384 gambling 92—98 253—257 261 Game tree 62 Generality of causal relations 316—319 336—337 Given 429 Glymour, Clark see "Spirtes Peter" Godambe, V.P. 253 329 Goldman, Noreen 320 Good, I.J. 147 Granger, C.W. 189 Graph 385—391 Graph, connected 385 Graph, directed 386—391 see Graph, directed acyclic 386 see Graph, undirected 385 see Greatest lower bound 394 Grounding 294—297 Habel, Annegret 378 Happening 37 47—49 305 Harman, H.H. 460 Hasse diagram 230 395 Head of Humean chain 45 Head of Humean event 45 246 Head of probability conditional 478 Head of simple Humean event 43 Hein, Piet xvii Hidden Markov model 369 Hilton, Denis J. 303 Hinkley, David V. 329 Holland, Paul W., counterfactuals 108 Holland, Paul W., intervention 345 Holland, Paul W., Lord's paradox 322 Holland, Paul W., randomized experiments 321 Hope, Keith 460 House 269 Hume, David 2 Humean chain 44 235 Humean event 23—26 43—49 246 Humean event as pair of partial cuts 46 246 Humean event, divergent 47 246 Humean event, effect of 311 Humean event, full 47 246 Humean event, global 47 246 Humean event, initial 47 246 Humean event, proper 47 246 Humean event, simple 34 43 246 Humean tree 35 283 Humean variable 53—54 246 Humean variable, concomitants of 54 246 Humean variable, global 54 246 Humean variable, initial 54 246 Humean variable, resolvent of 54 246 Humphreys, Paul, common causes 133 Humphreys, Paul, events as causes 13 62 153 Humphreys, Paul, variables as causes 189 Huygens, Christiaan, manuscript in translation 380—384 Huygens, Christiaan, oldest extant event trees 4 61 Huygens, Christiaan, problem of gambler's ruin 363 365 379 Hypergraph 377—378 Identification 51 53 402 Implication of constancy 216 Independence see also "Formal independence" Independence diagram 341 Independence for families of variables 182—186 Independence for Moivrean events 10 114 118 Independence for Moivrean variables 12 170 174 268 Independence for partitions 179 181 443 Independence, conditional 431 see Independence, modulo 129 177 Independence, modulo in mean 177 Independence, posterior 128 175 Independence, proper 431 432 Independence, sample-space 14 425—452 Independence, stability under refinement 292 Independence, unconditional 426 Independence, weak 119 130 174 Indirect effect 458 Indirect effect, causal interpretation 345 Influence see "To influence" Influence diagram 366 Ingersoll, Jonathan E., Jr. 425 Initial subgraph 347 387 471 Interactive fork 151 Intersection axiom 452 Intervention 318 345 Inus condition 44 Iterated expectation 81 85 413 Iwasaki, Yumi 378 Jech, Thomas J. 229 Jeffrey, Richard 153 Jeffreys's law 406 Joereskog, K. 462 Joint causal diagram 20—23 339—342 Joint diagram 394—395 Joint independence 175 Kang, Kathy M. 453 456 Kemeny, J.G. 62 Kendall, M.G. 42 Kenny, David A. 317 Khinchin, A. 406 Kohli, K. 380 Kolomogorov, A.N., axioms for probability 6 Kolomogorov, A.N., computable sequences 111 Kolomogorov, A.N., neutrality of mathematics 7 Kolomogorov, A.N., rigor of sample-space framework 61 Laface, Pietro 369 Laplace's law of succession 362 Latent variable 352 460 Lattice 395 Lauritzen, Steffen L., chain-graph diagrams 476 Lauritzen, Steffen L., characterization of d-separation 389 Lauritzen, Steffen L., independence and formal independence in binary tree 118 Lauritzen, Steffen L., irrelevance of construction ordering 468 Law of Large Numbers 98—101 272—274 405—406 Leaf 385 Learner, Edward E. 318 357 Least upper bound 394 Least-squares linear prediction 419 Lehmann, E.L. 329 Lewis, David 108 Lieberson, Stanley 320 Lifting of Humean events 284 Lifting of Moivrean events and variables 288 Linear function 418 Linear identification 53 310 314 402 Linear prediction 333 419 Linear prediction, causal interpretation 334—335 Linear regression 418—423 Linear regression, causal interpretation 314 Linear regression, error 419 Linear relevance diagram 466 475 Linear relevance diagram, causal interpretation 347 348—349 Linear relevance diagram, irrelevance of construction ordering 468 Linear sign 12 216 222—225 Linear sign as causal interpretation of linear prediction 335 Linear sign in martingale tree 258 268 Linear sign, joint and individual 338 Linear sign, scored 225 Linear sign, stability under refinement 292 Linear sign, weak 223 Linear subsequence 209 Linear-sign diagram 339 Linearity of expectation 84 403 Linearity of expected value 77 Linearly accounting for 429 Long run 98—101 Longitudinal evidence 13 322 343 Lord's paradox 322—328 Lord, Frederick M. 322 Lower expectation 269 Lower expected value 269 Lower probability 272 Luce, R. Duncan 62 Mackie, J.L. 43 44 Magnusson, Lena 377 Manipulation 318 Maranto, C. 22 Marginal 478 Marini, Margaret Mooney 357 Markov chain 64 201—202 Markov chain, state graph for 363—365 Markov diagram 466 472 Markov diagram as dependence diagram 366 482 Markov diagram, causal interpretation 346 349—351 472 Markov diagram, functional 350 Markov diagram, irrelevance of construction ordering 468 Markov diagram, temporal 350—351 366 Martin-Loef, Per, computable sequences 111 Martin-Loef, Per, type theory 360 371 373 374 Martingale 79—83 257—261 Martingale difference sequence 209 Martingale sequence 209 Martingale tree 247—274 Martingale tree, Doob 262 Martingale, admissible 267 Martingale, determinate 80 Martingale, evaluates Moivrean variable 79 Martingale, expectation of 80 Martingale, local component 260 Martingale, neutral 260 Martingale, resolution of 80 Martingale, uncorrelated 258 McLaughlin, Robert 133 Mean effect 305 312 Mean effect, variance-adjusted 310 312 Mean relevance diagram 466 473—474 Mean relevance diagram, causal interpretation 346 351—352 Mean tracking diagram 339 Mediation 317 Mixture 295 297 Moivrean event 10 33 235 Moivrean event in causal relations 10 Moivrean event, certain 35 Moivrean event, impossible 34 35 Moivrean event, incompatible 37 Moivrean event, interpreted as Moivrean variable 49 Moivrean event, matched to situation 33 Moivrean event, proper 37 Moivrean event, sure 34 Moivrean variable 11 49—53 235 Moivrean variable in causal relations 11—12 Moivrean variable, constant 50 Moivrean variable, identifies cut 51 Moivrean variable, latent 352 Moivrean variable, not a cause 336 338 Moivrean variable, numerical 49 Moivrean variable, partial 49 235 Moivrean variable, uncorrelated 78 Monitoring 360 Monotonic function 80 259 Moral graph 388 Morgan, Mary S. 357 Mother 34 233 386 Nature 2 9 Neighbor 385 Nondescendant 386 Nordstroem, Bengt 371 377 NUMBER 399 Observer 8 Oldford, R. Wayne 190 Oliver, Robert M. 366 Olmsted, S.M. 363 Parent 386 Partial correlation 429 442 Partial ordering 393 Partial, nonrestrictive use of 41 Partially ordered set 393 Partition 39 50—53 396 Partition of variance and covariance in path diagram 457 Partition of variance and covariance, relative to cut 85 Partition of variance and covariance, relative to happening of Moivrean event 307 Partition of variance and covariance, relative to steps in the tree 78 Pascal, Blaise 61 365 379—380 Path (in event tree) 234 Path (in event tree), partial 235 Path (in graph) 385 Path analysis 458 Path diagram 454—462 Path diagram with cycles 466 Path diagram, causal interpretation 21—22 342—345 462 Path diagram, completely untangled 343 458 Path diagram, error-untangled 343 458 Path diagram, generalized 462—466 Path diagram, reduced 461 Path diagram, scaled 461 Path diagram, standardized 457 Payoff 256 Pearl, Judea, automated model search 454 Pearl, Judea, axioms for independence 187 450 452 Pearl, Judea, Bayes nets 366 Pearl, Judea, functional dependence 472 Pearl, Judea, intervention 345 Pearl, Judea, Moivrean variables as causes 338 Pearl, Judea, other methods for handling uncertainty 106 Pearl, Judea, subtle use of covariates 326 Pearson, Egon S. 42 Perry, John 375 Poincare, Henri 9 Pratt, John W. 330 Precedence for cuts 40 238 Precedence for families of Moivrean variables 53 Precedence for Moivrean events 10 38 Precedence for Moivrean variables 12 50 244 Precedence for partial cuts 41 238 Precedence for partitions 52 Precedence for situations 38 233 Predecessor 466 Prediction in mean 333 Prediction in mean, causal interpretation 334—335 Prequential principle 107 Priestley, H.A. 393 Principle of the common cause 121—128 Probabilistic cause 160—162 probability 267 Probability assignment 69 Probability catalog 81 Probability catalog, local 265 Probability conditional 478 probability distribution 74 400 Probability distribution, abstract 479 Probability graph 361—363 Probability in a situation 64 68 Probability measure 399 Probability measure, strictly positive 399 Probability of Moivrean event 10 Probability prediction 333 Probability prediction, causal interpretation 334—335 Probability space 399 Probability space, strictly positive 399 Probability tree 3—7 64 Probability tree, binary 117 Probability tree, strictly positive 70 Probability vector 264 Probability, conditional 64 73 Probability, diversity of uses 108—110 Probability, interpretation 91 253 Probability, lower and upper 272 Probabilize see "To probabilize" Proxy variable 320 
                            
                     
                  
			Реклама