Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Emanuel Parzen — Stochastic processes (Classics in Applied Mathematics)
Emanuel Parzen — Stochastic processes (Classics in Applied Mathematics)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Stochastic processes (Classics in Applied Mathematics)

Автор: Emanuel Parzen

Аннотация:

This introductory textbook explains how and why probability models are applied to scientific fields such as medicine, biology, physics, oceanography, economics, and psychology to solve problems about stochastic processes. It does not just show how a problem is solved but explains why by formulating questions and first steps in the solutions.
Stochastic Processes is ideal for a course aiming to give examples of the wide variety of empirical phenomena for which stochastic processes provide mathematical models. It introduces the methods of probability model building and provides the reader with mathematically sound techniques as well as the ability to further study the theory of stochastic processes.
Originally published in 1962, this was the first comprehensive survey of stochastic processes requiring only a minimal background in introductory probability theory and mathematical analysis. Stochastic Processes continues to be unique, with many topics and examples still not discussed in other textbooks. As new fields of applications (such as finance and DNA analysis) become important, researchers will continue to find the fundamental and accessible topics explained in this book essential background for their research.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1999

Количество страниц: 344

Добавлена в каталог: 21.10.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Independent increments, stochastic processes with, definition of      26 27
Independent random variables, criteria for      13 15
Independent stochastic processes, definition of      25
Indicator function, definition of      45
Inessential states      224 243
Infinitely divisible laws      124
Input function      104—108 110—114
Integer-valued process      see also “Counting process One- 117 123 160 299
Integer-valued process, definition of      30
Integer-valued process, with independent increments      37 124 125 191
Integer-valued process, with stationary independent increments      see also “Poisson process generalized” 118 126 130
Integral of stochastic processes      see “Stochastic integral”
Intensity function      168 169
Intensity function of a Poisson process      125
Intensity functions of a Markov chain      289—292 305 306
Intensity of passage      278 289 293 294
Intensity of transition      see “Transition intensity”
Inter-arrival times      138 139 168 170 266
Inter-arrival times, definition of      117 132 133 266
Inter-arrival times, exponentially distributed      118 133—135 142 173—177 199 281 283 287
Inter-arrival times, gamma distributed      174—177 181 199
Inter-arrival times, in a renewal counting process      163 165 166 171—183 185 186
Inter-arrival times, in queues      5 199 206 207 258 265 281—283 287
Inter-arrival times, mean      148 185 186 258 265 282
Inter-arrival times, of a non-homogeneous Poisson process      138
Inverse function, definition of      21
Inversion formula      12
Irreducible Markov chain      see “Markov chain irreducible”
Jenkins, G.M.      111
Jensen, A.      283
Joint characteristic function      see “Characteristic function joint”
Jointly distributed random variables      12
Jointly normal distribution, approximately      98
Jointly normal distribution, n-dimensional      88—94
Jointly normal distribution, two-dimensional      53 54 59 95 96 116
Jointly normal probability density function      54 88 89 94
Kac, M.      29 102
Karlin, S.      4 173 280 299
Kemeny, J.G.      241
Kendall, D.G.      199 221 272 273 304
Key renewal theorem      183 184 186
Khinchin, A.I. (Khintchine, A.Ya.)      73 108 110 125
Kolmogorov — Smirnov test      see also “Goodness of fit test” 100—102 141 143
Kolmogorov's backward equation      291—293 300
Kolmogorov's forward equation      291—293 300
Kolmogorov, A.N.      291
Korff, S.A.      164
Lagrange's method      302
Lanning, J.H.      4
Laplace — Stieltjes transform      177 178 180 183
Lattice random variable      182 185 186
Law of Large Numbers      18 267
Ledermann, W.      299
Life testing      137
Linear growth process, non-homogeneous      302
Locking time      see “Deadtime”
Loeve, M.      52 70fn 73 136 267
Lomax, K.S.      169
Long-run distribution      250
Long-run distribution, definition of      248
Long-run distribution, determination of      261 262
Long-run distribution, existence of      255—268 265 277 284
Long-run distribution, for queues      284 286
Long-run distribution, of birth and death process      280 282 283 287
Longuet-Higgins, M.S.      40
Lotka, A.J.      201
MacFadden, J.A.      40
Machine failures      see “Failures system”
Machlup, S.      39
Maguire, B.A.      102 137 139
Management science      1 4 144 146
Mandelbrot, B.      150
Markov chain      187—199 203—217 220—273 276—306
Markov chain, absorbing      241 246
Markov chain, aperiodic      256—258 270—273
Markov chain, continuous parameter, definition of      190 193
Markov chain, decomposition of      209—211 222
Markov chain, definition of      187—189
Markov chain, discrete parameter, definition of      189 193
Markov chain, finite, absorption time of      239 241 246
Markov chain, finite, decomposition of      222 223
Markov chain, finite, definition of      196
Markov chain, finite, first passage probabilities of      229 253
Markov chain, finite, irreducible      249 251 253 255 257 262 270 271 273 277
Markov chain, finite, stationary distribution of      251
Markov chain, finite, transition probability matrix of      232 246 255 257
Markov chain, homogeneous      208 212
Markov chain, homogeneous, definition of      193 194
Markov chain, homogeneous, imbedded      198 206
Markov chain, homogeneous, intensity functions of      289 292 293
Markov chain, homogeneous, transition probability matrix of      196—198 204 206 207 256
Markov chain, homogeneous, two-state      197 198 207 256 293
Markov chain, imbedded      190 273
Markov chain, imbedded, of the GI/M/1 queue      206 265
Markov chain, imbedded, of the M/G/1 queue      190 198 199 258 260
Markov chain, irreducible      236 249 277
Markov chain, irreducible, classification of      258 260
Markov chain, irreducible, definition of      235 276
Markov chain, irreducible, geometrically ergodic      272
Markov chain, irreducible, in queueing theory      258
Markov chain, irreducible, non-current      235—237 249 253 258 260 261 265
Markov chain, irreducible, null-recurrent      258 260 265
Markov chain, irreducible, periodic      256 258 263
Markov chain, irreducible, positive recurrent      245 252 253 256 258 260—262 264—266 277
Markov chain, irreducible, recurrent      225 235 236 242—244 246 252 258 260 270
Markov chain, irreducible, stationary distribution of      251 252 258 265 277
Markov chain, irreducible, with a long-run distribution      255 256 257 258 265 277
Markov chain, irreducible, with doubly stochastic transition probability matrix      255 256 262
Markov chain, multiple      191 192
Markov chain, non-homogeneous      288
Markov chain, two-state      197 207 213 293 256
Markov chain, with stationary transition probabilities      see “Markov chain homogeneous”
Markov process      117 187—189 191 192
Markov process, classification of      188
Markov process, definition of      187 188
Markov process, homogeneous      189
Markov process, pathological      292
Markov process, with stationary transition probabilities      189
Markov property      194 214
Martingale      65
McGregor, J.L.      280 299
Mean recurrence time      see “Recurrence time mean”
Mean square differentiability      83—85 91—92
Mean square error      114
Mean square, convergence in      78 79 80 91
Mean value function      68 72 76 79—83 85 92 95
Mean value function, definition of      67
Mean value function, derivative of      83 156
Mean value function, of a covariance stationary process      71 94
Mean value function, of a homogeneous Poisson process      68 125 143
Mean value function, of a non-homogeneous Poisson process      125 138 156 158 297
Mean value function, of a normal process      67 95 101
Mean value function, of a renewal counting process      170 177—181 183 185
Mean value function, of a stochastic process with stationary independent increments      77
Mean value function, of the increment process of the Poisson process      68 69
Mean, definition of      13
Means, table of      13 14
Method of first entrance      214 215
Middleton, D.      4
Miller, G.A.      191
Molina, E.C.      281
Moment function, second      179
Moment-generating function, definition of      11
Moments      17 18
Montroll, E.W.      29
Multiple Markov chain      191 192
Multiplicative process      see “Branching process”
Negative binomial distribution      13 15 17
Negative binomial distribution, related to pure birth processes      297
Negative binomial distribution, related to renewal counting processes      179
Negative binomial distribution, related to the compound Poisson and geometric distributions      57 58
Negative binomial distribution, related to the generalized Poisson distribution      127
Neumann, J. von      see “von Neumann”
Neyman, J.      1 71 130
Non — Markov chain      205
Non — Markov process      203
Non-homogeneous birth and death process      299 300 306
Non-homogeneous linear growth process      302
Non-homogeneous Markov chain      288
Non-homogeneous Poisson process      see “Poisson process non-homogeneous”
Non-paralyzable counter      164 165 170 181 182 185
Non-recurrent class      221—225 235
Non-recurrent Markov chain      235—237 249 253 258 260 261 265
Non-recurrent state      221—229 235 238 239 241—247 252 263
Non-recurrent state, definition of      221
Non-return state      208—211
Normal distribution      14 15 17 19—21 54 60 91 93 95 96 141 169
Normal distribution, asymptotically      see “Approximately normal distribution”
Normal distribution, in stochastic processes      26 66 76 77 192
Normal distribution, jointly      see “Jointly normal distribution”
Normal distribution, of a normal process      88
Normal distribution, related to a filtered Poisson process      151
Normal probability density function, jointly      54 88 89 94
Normal process      66 88—99 101 102 113 114 116
Normal process, approximately      98 101
Normal process, definition of      89 90
Nuclear particle counter      139 162—166 179 181
Null-recurrent Markov chain      258 260 265
Null-recurrent state      245
Occupation time      189 221 265 268
Occupation time, definition of      211 212
Olkin, I.      18
One-minus-one process      see also “Two-valued process” 36 37 77
Operations research      1 4 144 146
Order statistics      140 141 143
Ornstein — Uhlenbeck process      96 97 115
Ornstein, L.S.      97
Osborne, M.F.M.      29
Output function      104—108 110—114
Owen, A.R.G.      168
Paralyzable counter      145 158 164—166 181 182 186
Parameter estimation      see “Estimation parameter”
Parzen, E.      8fn 72 74 111
Passage intensity      278 289 293 294
Pathological Markov process      292
Pearson, E.S.      102 137 139
Period, of a communicating class      256 262 263
Period, of a state      255 256 262 263
Periodic Markov chain      256 258 263
Periodic state      255 256
Perrin, J.      27 29
Persistent state      see “Recurrent state”
Plancherel theory      108 109
Poisson counting process      see “Counting process”
Poisson distribution      13 15 17 20 21 26 31 97 102 127
Poisson distribution, and a filtered Poisson process      147 148 151—153
Poisson distribution, censored      283
Poisson distribution, compound      57
Poisson distribution, in estimation and testing      136 137 139 141 142 144
Poisson distribution, in queueing      149 190 282
Poisson distribution, of a compound Poisson process      57 129 132
Poisson distribution, of a Poisson process      30—32 34 67 119 124
Poisson distribution, of a pure birth process      296
Poisson distribution, of a renewal counting process      174 176
Poisson distribution, of arrivals      82 134 135 138 144 147 149 152 153 158
Poisson distribution, of particle arrivals at counters      162 170 179 181 182 185 186
Poisson process      8 15 26 31 33—35 69 77 143 288
Poisson process, and the binomial distribution      49
Poisson process, and the uniform distribution      140 141
Poisson process, as a random telegraph signal      36 37
Poisson process, as a renewal process      163 174
Poisson process, asymptotic normality of      103
Poisson process, axiomatic derivation of      118—120 123
Poisson process, compound      99 128—130 146 156
Poisson process, covariance kernel of      68 69
Poisson process, definition of      30
Poisson process, filtered      144—147 297 306
Poisson process, filtered non-homogeneous      156
Poisson process, filtered, extended      152 153
Poisson process, filtered, generalized      156
Poisson process, generalized      32 118 126 127 130 131
Poisson process, generalized, axiomatic derivation of      127
Poisson process, homogeneous      124—126
Poisson process, in a Brownian motion      80 98
Poisson process, in a pure birth process      296 305
Poisson process, in a shot noise process      149
Poisson process, in estimation and testing      135 136 141 143
Poisson process, in particle counter problems      132 138 139 158 163 166
Poisson process, in space      31 32 34
Poisson process, increment process of      68 87
Poisson process, intensity function of      125
Poisson process, mean value function of      68 69 126 143
Poisson process, non-homogeneous      118 124—126 138 143 156 157 297
Poisson process, non-homogeneous, axiomatic derivation of      125 126
Poisson process, sample function of      29
Poisson process, sample mean of      86
Poisson process, truncated      298
Poisson process, under random selection      47 48 50
Poisson process, with non-stationary increments      see “Poisson process non-homogeneous”
Poisson process, with stationary increments      124—126
Poisson square wave      77
Poliak, H.O.      150
Positive recurrent Markov chain      245 252 253 260—262 264—266
Positive recurrent state      245 253
Prais, S.J.      257
Pratt, J.W.      18
Prediction      3 43 113 114
Probability density functions, definition of      10
Probability density functions, table of      14
Probability distribution function, definition of      10
Probability distribution function, of a stochastic process      72
Probability function      8—10
Probability function, transition      see “Transition probability function”
Probability laws, definition of      10
Probability laws, table of      13—15
Probability mass functions, definition of      10
Probability mass functions, table of      13
Pure birth process      293 295 300
Pure birth process, with constant birthrate      118 296 298
Pure birth process, with immigration      305
Pure birth process, with linear birthrate      296 299 302 306
Pure death process      299 300
Quadratic mean, convergence in      78 79 83 91
Queues      190 191 262 273 281—283 288
Queues, classification of      5
queues, description of      199
Queues, finite server      281—288
Queues, infinite server      144 145 147—149
Queues, sample mean of      82
Queues, single server      198 199 284 288
Queues, single server G1/M/1      206 265
Queues, single server M/G/1      258
Queues, two-server      288
Radon — Nikodyn theorem      52
Random event, definition of      8
Random telegraph signal      37 77 80 86 115
Random telegraph signal, definition of      36
Random variables, definition of      8—10
Random variables, identically distributed      10
Random variables, independent      13 15
Random variables, jointly distributed      12
Random variables, kinds of      10
Random variables, uncorrelated      16
Random walk      204 242 254 280
Random walk, approximating a birth and death process      280
Random walk, definition of      23 229
Random walk, duration of      239 241
Random walk, first passage time in      243 244
Random walk, non-current      225 236 253
Random walk, null-recurrent      259
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте