Авторизация
Поиск по указателям
Higham N. — Accuracy and stability of numerical algorithms
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Accuracy and stability of numerical algorithms
Автор: Higham N.
Аннотация: Treats the behavior of numerical algorithms in finite precision arithmetic, combining algorithmic derivations, perturbation theory, and rounding error analysis and emphasizing software practicalities, with particular reference to LAPACK and MATLAB. Includes historical perspectives, especially on the work of Wilkinson and Turing, with quotations introducing chapters on subjects such as floating point summation, condition number estimation, and the Sylvester equation. Although designed as a reference rather than a text, it includes problems and solutions. Annotation c. by Book News, Inc., Portland, Or.
Язык:
Рубрика: Математика /Численные методы /Численный анализ /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1996
Количество страниц: 688
Добавлена в каталог: 23.02.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Underflow, effects on software 504
Underflow, model for error analysis 61
Underhill, L. G. 527
Ungar, Peter 461
UNICOS library (Cray) 448 450
Unit roundoff 3 42
Update formula, involving small correction 30
Urabe, Minora 62
Uspensky, J. V. 490
Vajtersic, M. 461
van der Sluis, A. 137 138 198 207 391q 409
Van der Sluis’s theorem 137
Van der Vorst, Henk A. 195 225 257 329
Van Loan, Charles F. xxiv 27 141 149 182 190 195 223 225 229 231q 257 299 311 312 312n 345q 348 352 359 370 371 384 386 388 392 409 412 465q 466 470 580
van Veldhuizen, M. 196
van Wijngaarden, A. 501
Vancouver Stock Exchange, inaccurate index 57—58
Vanderbei, Robert J. 229
Vandermonde matrix, bounds and estimates for condition number 428
Vandermonde matrix, definition 426
Vandermonde matrix, inverse 426—428
Vandermonde matrix, inversion algorithm 427
Vandermonde matrix, LU factorization in factored form 432—433
Vandermonde matrix, QR factorization 441
Vandermonde matrix, structured condition number 440—441
Vandermonde system 425—443
Vandermonde system, accuracy independent of condition number 436
Vandermonde system, algorithm for dual 431—432
Vandermonde system, algorithm for primal 433—434
Vandermonde system, algorithm for residual of confluent system 439
Vandermonde system, backward error analysis 437
Vandermonde system, complexity results 441
Vandermonde system, curing instability 438—440
Vandermonde system, forward error analysis 435—436
Vandermonde system, history of solution methods 441
Vandermonde system, preventing instability 438
Vandermonde-like matrix, confluent, definition 429
Vandermonde-like matrix, definition 429
Vandermonde-like matrix, determinant 442
Varah, James M. 146 167 257 258
Varga, Richard S. 160 167 257 508
Variance, algorithms for computing 12—13 33
Variance, condition numbers for 37
Variance, error bound for two-pass formula 38
Vec operator 310
Vemulapati, Udaya B. 301 412
Venus probe, loss due to program bug 491q
Veselic, Kresimir 225
Vet-permutation matrix 319 323
Vetterling, William T. 479 490 507
Vieta, Franciscus 483
Vignes, J. 53
Vitasek, Emil 100
Viten’ko, I. V. 95
von Neumann, John 33 52 186 187 196 263 517
Waite, William 497 499
Walden, Bertil 404 413
Walker, Homer R. 32 328
Wallis, Jennifer Seberry 179
Wallis, W. D. 179
Wang, Johnson J. H. 198
Ward, Robert C. 285
Warming, Robert F. 527
Wasilkowski, G. W. 147
Wasniewski, Jerzy 305
Wasow, Wolfgang R. 32
Watson, G. A. 146
Watterson, Bill 473
Wedderburn, J. H. M. 117q
Wedin, Per-Ake 392 407 409 412 422
Wedin’s least squares perturbation theorem 392—393
Wedin’s least squares perturbation theorem, proof 407—409
Wegert, Elias 353
Wei, Musheng 388 410
Weidner Peter 486
Weiss, N. 147
Wendroff, Burton 189 197
Werner, Wilhelm 113
Westin, Lars 305 323
Westlake, Joan R. 514
Wette, Matthew R. 323
White, Jon L. 61
Wichmann, B. A. 499 502
Wilkinson, first program for Gaussian elimination 195—196
Wilkinson, J. H. xxi xxiv xxvii xxviii 14 25 31 33 34 39q 52 56 58 67q 73 75 84 100 103q 104 113 117q 145 151q 164 175 177 178 180—182 187—191 195—197 203q 207 208 224 232 241 252 279 283—285 287 297 326 327 343q 348 361q 364 365 384 385 387 391 400 409—411 474 485 542 585q
Wilkinson, on the purpose of a priori error analysis 203q
Wilkinson, solving linear systems on desk calculator in 1940s 187—188
Wilkinson, user participation in a computation 31
Williams, Jack 425q
Wilson, Greg 60
Winograd, Shmuel 446 448 461
Winograd’s method 446 461
Winograd’s method, error analysis 451—452
Winograd’s method, scaling for stability 452
Wisniewski, John A. 488
Witzgall, C 119 126 127
Wobbling precision 43 51
Wolfe, Jack M. 97
Wolfe, Philip 32
Woodger, Michael 169q 445
Wozniakowski.H. 32 94 147 241 242 300 328
Wrathall, Celia 488
Wright, Margaret H. 32 225 479
Wright, Stephen J. 178
WY representation of product of Householder matrices 370—371
Yalamov, P. Y. 83
Yip, E. L. 490
Yohe, J. Michael 486 504
Yorke, James A. 32
Young, David M. 326t 350
Young, Gale 126
Yuvzd, Gideon 459
Zang, Thomas A. 32
Zawilski, Adam T. 328
Zehfuss, Johann Georg 323
Zeller, K. 84
Zeng, Z. 285
Zha, Hongyuan 167 382
Zielke, Gerhard 126 527
Zietak,K. 323
Ziv, Abraham 60 61 83 84
Zlatev, Zahari 305
Реклама