Авторизация
Поиск по указателям
Polchinski J. — String theory (volume 1). An introduction to the bosonic string
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: String theory (volume 1). An introduction to the bosonic string
Автор: Polchinski J.
Аннотация: The two volumes that comprise String Theory provide an up-to-date, comprehensive account of string theory. Volume 1 provides a thorough introduction to the bosonic string, based on the Polyakov path integral and conformal field theory. The first four chapters introduce the central ideas of string theory, the tools of conformal field theory, the Polyakov path integral, and the covariant quantization of the string. The book then treats string interactions: the general formalism, and detailed treatments of the tree level and one loop amplitudes. Toroidal compactification and many important aspects of string physics, such as T-duality and D-branes are also covered, as are higher-order amplitudes, including an analysis of their finiteness and unitarity, and various nonperturbative ideas. The volume closes with an appendix giving a short course on path integral methods, followed by annotated references, and a detailed glossary.
Язык:
Рубрика: Физика /Квантовая теория поля /Теория струн /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1998
Количество страниц: 402
Добавлена в каталог: 25.09.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Twisting (orbifold) construction 259—263
U(n) 30 185 188—189 230
Ultraviolet (UV) divergences see under "Divergences"
Unit gauge 85
Unitarity see under "S-matrix"
Unitary CFT 71—73 117 137 213
Unoriented string theory 29—30 80—81
Unoriented string theory, Chan — Paton states 189—192
Unoriented string theory, one-loop amplitudes 226—229
Unoriented string theory, orientation-reversal as gauge symmetry 149 153 277—279
Unoriented string theory, Riemann surfaces 80—81 100—101
Unoriented string theory, T-duality 277—280 351
Vacuum amplitude, field theory 218
Vacuum amplitude, physics of 220—222
Vacuum amplitude, string 198 216—230 274—276
Vacuum degeneracy 7 118 233—234 261 348
Veneziano amplitude 178—184 204 348
Vertex operators 63—68 74 97—102 349
Vertex operators, general construction 63—66
Vertex operators, must be on mass-shell 101—103 113
Vertex operators, normalization 101—102 107 187 194 276 284
Vertex operators, OCQ 125 143 160—161 164 165
Vertex operators, Polyakov approach 102—107 119
Vertex operators, positions 99—100
Vertex operators, positions, coincident limit 195—196 306—309
Vertex operators, positions, in specific amplitudes 178—180 192—193 204 216—217
Vertex operators, positions, relation to moduli and CKVs 149—152 154—157 163—164
Vertex operators, specific 101—102 107
Vertex operators, twisted state 258 351
Vertex operators, winding state 238—239 243—245 251
Virasoro algebra 52—57 75—76
Virasoro generators as constraints 121—122 133
Virasoro generators, centered on operators 70
Virasoro generators, centered on operators, as derivative 71
Virasoro generators, centered on operators, as weight 71
Virasoro generators, Hermiticity 71
Virasoro generators, oscillator expressions 59 61—62
Virasoro generators, winding state 238
Virasoro — Shapiro amplitude 192—195 204—205
Ward identity 41—43 55
Ward identity as local property 86
Ward identity for conformal symmetry 45—46
Weight (conformal) 46—47 71—73
Weight (conformal) of vertex operators 101 125 143
Weight (conformal), positivity 72
Wess — Zumino consistency condition 96
Weyl anomaly see under "Anomaly"
Weyl transformation 13 15—16 30
Weyl transformation of curvature 15 85 114
Weyl transformation of nonlinear sigma model 110—112
Weyl transformation of vertex operators 102—107
Weyl transformation, as redundancy 13 84 117 326
Weyl transformation, gauge-fixing of 17—18 85
Weyl transformation, ghosts trivial 88 131
Weyl transformation, relation to conformal transformation 86
Weyl transformation, spacetime 114 233 254
Wick's theorem 60
Wilson line 263—268 279—280
Wilson line, breaks gauge symmetry 265 270
Winding state 31 235—239
Winding state, Dirichlet open string 266—267
Winding state, massless as 247
Winding state, vertex operators 238—239 243—245 251
World-sheet 13—14
World-sheet duality 287 332
World-sheet duality, cylinder 226 274
Wrapped, D-brane 273
Wrapped, world-sheet 237 250
Yukawa couplings 1 79
Zamolodchikov inner product 200
Zero modes, 169—170 173
Zero modes, ghost 157—159 161 176 212
Zero-norm states see "Null states"
Zero-point energy 59—61 72
Zero-point energy, heuristic 21—22 26
Zero-point energy, mnemonics 73 125
Zero-slope limit 188
Реклама