Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Tennekes H., Lumley J.L. — A First Course in Turbulence
Tennekes H., Lumley J.L. — A First Course in Turbulence



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: A First Course in Turbulence

Авторы: Tennekes H., Lumley J.L.

Аннотация:

The subject of turbulence, the most forbidding in fluid dynamics, has usually proved treacherous to the beginner, caught in the whirls and eddies of its nonlinearities and statistical imponderables. This is the first book specifically designed to offer the student a smooth transitionary course between elementary fluid dynamics (which gives only last-minute attention to turbulence) and the professional literature on turbulent flow, where an advanced viewpoint is assumed. Moreover, the text has been developed for students, engineers, and scientists with different technical backgrounds and interests. Almost all flows, natural and man-made, are turbulent. Thus the subject is the concern of geophysical and environmental scientists (in dealing with atmospheric jet streams, ocean currents, and the flow of ivers, for example), of astrophysicists (in studying the photospheres of the sun and stars or mapping gaseous nebulae), and of engineers (in calculating pipe flows, jets, or wakes). Many such examples are discussed in the book. The approach taken avoids the difficulties of advanced mathematical development on the one side and the morass of experimental detail and empirical data on the other. As a result of following its midstream course, the text gives the student a physical understanding of the subject and deepens his intuitive insight into those problems that cannot now be rigorously solved. In particular, dimensional analysis is used extensively in dealing with those problems whose exact solution is mathematically elusive. Dimensional reasoning, scale arguments, and similarity rules are introduced at the beginning and are applied throughout. A discussion of Reynolds stress and the kinetic theory of gases provides the contrast needed to put mixing-length theory into proper perspective: the authors present a thorough comparison between the mixing-length models and dimensional analysis of shear flows. This is followed by an extensive treatment of vorticity dynamics, including vortex stretching and vorticity budgets. Two chapters are devoted to boundary-free shear flows and well-bounded turbulent shear flows. The examples presented include wakes, jets, shear layers, thermal plumes, atmospheric boundary layers, pipe and channel flow, and boundary layers in pressure gradients. The spatial structure of turbulent flow has been the subject of analysis in the book up to this point, at which a compact but thorough introduction to statistical methods is given. This prepares the reader to understand the stochastic and pectral structure of turbulence. The remainder of the book consists of applications of the statistical approach to the study of turbulent transport (including diffusion and mixing) and turbulent spectra.


Язык: en

Рубрика: Математика/Численные методы/Моделирование физических процессов/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1972

Количество страниц: 300

Добавлена в каталог: 20.02.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
No-slip condition      14 54 146 167
Non-Newtonian fluids      5
Nonlinear systems      6 33
Normal stress      33
Normal stress difference      131
Normalized boundary-layer thickness      183
Nuclear power station      145
Oblique waves      249
Oboukhov, A. M.      97 100 283
Ocean waves      3 97 222
Ohmic dissipation      93
One-dimensional spectrum      248 280
Orszag, S. A.      5
Outer layer      146
Outer scales      20
Overlap, region of      153 265
Panofsky, H. A.      97
Pao, Y. H.      269
Parseval’s relation      205 214 219
Passive contaminants      see “Contaminant passive”
Peclet number      10 224
Permanence of the largest eddies      287
Perturbation methods      155
Pipe flow      103 156 224 234
Plane flow      104
Planetary boundary layers      166
Plumes      135
Pollutants      232 247
Polymer solution      195 247
Porous wall      52
potential flow      179
Power spectral density      214
Prandtl number      10 33 38 96 97 103 280 282 283 284 286
Prandtl, L.      5 49 55 57
Pressure work      62 64 69
Pressure-gradient perameter      186
Pressure-velocity interaction      75
probability density      198 201
Probability density of integrals      218
Production of temperature fluctuations      95
Production of turbulent energy      62 120 122 159 266
Production of vorticity fluctuations      86 91
Production spectrum      271
Production, buoyant      97 100
Propagation of interface      119 122
Pure shear flow      34 40 50 60 74
Quarter-radius probe      158
Radioactive tracers      47 225
Random function      248
Randomness      1 2
Region of overlap      153 265
Return to isotropy      260
Reversal of flow      132
Reynolds analogy      51 102
Reynolds decomposition      28 84
Reynolds equations      27
Reynolds momentum equation      32
Reynolds, O.      27
Reynolds-number similarity      6 187
Reynolds-stress gradients      78 85
Reynolds-stress tensor      32
Richardson number      98 99
Rigid wall      52
Root-mean-square value      30 200
Rossby number      170
Rotation of vorticity      83
Rotation tensor      76
Rotational      2 76 88
Roughness height      146 152
Rouse, H.      143
Running time      73
Sacond-order flow      174 176
Saffman, P. G.      93
Samples, independent      214
Scalar contaminants      see “Contaminant”
Schlichting, H.      177
Schmidt number      280
Schwartz, W. H.      285
Schwartz’s inequality      210
Scrambling      262
Second central moment      199
Self-preservation      6 113 131 136 148 171 243
Self-preserving flows      179 187
Self-propelled wake      124
Separation      2 171 181 190
Shadowgraph picture      22
Shape factor      192
Shear layers      104 128 134
Similarity law      55 148
Sine wave      198
Single scales      47 57
Singular-perturbation problems      155
skewness      200
Skewness of derivatives      221
Slowly evolving flows      104 108 131 146
Small-scale structure      19 65 96
Smoke particles      232
Smokestack      1 136 247
Smooth wall (surface)      152 158
Solar wind      1
Solenoidal      84
Solid-body rotation      237
Space-time correlations      229
Spectral energy transfer      68 91 258 271
Spectral transfer of temperature      95 281
Spectral-spatial analogy      147 263 282
Spectrum      214
Spectrum of contaminant      279
Spectrum of derivatives      215
Spectrum of kinetic energy      5 248
Spectrum of temperature      281 286
Spectrum tensor      250
Speed of sound      37 226
Spetial-spectral analogy      147 263 282
Spherical shell      250 251 254
Spike in probability density      203
Spitzer, L., Jr.      23
Stable atmosphere      7 98 136
Standard deviation      30 200
Stationary variables      198 248
Stationary variables, averages of      216
Stationary variables, integrals of      218 220 232
Stationary velocity      223 236
Statistical indepandence      207 209
Stewart, R.W.      1 22
Stokes relation      4
Strain rate      27 60 260
Strain-rate fluctuations      29 59 63 221 239 241
Stratford, B.S.      173
Stress tensor      27 29 59
Stretching of vorticity      see “Vortex stretching”
Sublayer, inertial      147 153 162 176 264
Sublayer, viscous      58 158 263
Subrange, inertial      5 147 248 264
Subrange, inertial-convective      283
Subrange, inertial-diffusive      283
Subrange, viscous      263 276
Subrange, viscous-convective      283 284
Subrange, viscous-diffusive      283 285
Summation convention      27 225
Surface layer      81 85 100 146 161 171 186
Surface stress      150 168 183
Surface wind      168
Taylor microscale      65 92 102 211 221 238 260 276
Taylor, G. I.      5 20 45 47 51 66 68 80 91 225
Taylor’s hypothesis      253
Temperature equation      33 95 98 138 242
Temperature microscale      95 284
Temperature scale      95 134
Temperature spectrum      279
Tennekes, H.      56 102 168 169 174 176
terminal velocity      287
Thermal convection      97 101
Thermal diffusivity      8 39 293
Thermal plumes      135
Thermal pollution      145
Thermal wakes      242
Three-dimensional spectrum of energy      248
Three-dimensional spectrum of temperature      280
Tillman, W.      186
Time average      28 199
Time scale of decay      21 72 246
Time scale of large eddies      49 68 70 183 241
Time scale of mean flow      49 120 183
Time scale of microstructure      67 70
Time scale of spectral transfer      72 119
Time scale, convective      16
Time spectra      274
Top-hat function      205 219
Topper, L.      20 45 262
Towsend, A. A.      41 70 117 121 135 189
Tracers      47 225 235 237
Transition      7 18 55
Transport by viscous stresses      62 64 69
Transport in bounded flows      224
Transport in evolving flows      241
Transport in uniform shear flow      230
Transport model      42
Transport of contaminants      223
Transport of temperature      95 140 243
Transport of vorticity      59 86
Transverse correlation      251
Transverse integral scale      47 230 273
Transverse length scale      15
Transverse spectrum      251 255
Transverse time scale      148
Truncated spectra      272 273 278
Turbulent boundary layer      12 17 177
Turbulent energy budget      see “Energy budget”
Turbulent energy production      see “Production of turbulent energy”
Turbulent Peclet number      245
Turbulent Prandtl number      51 143
Turbulent Reynolds number      116 134
Turbulent spots      8
Two-dimensional eddies      41
Two-dimensional flow      91 104
Uberoi, M. S.      207
Uncorrected variables      30 209
Uniform shear flow, transport in      230
Universal equilibrium theory      19 262
Unstable atmosphere      98 136
Variance      30 199
Variance of a sum      217
Velocity defect      114 117 125
Velocity scale      9 30 55 106 148 151
Velocity-defect law      147 153 162 173 192
Viscous deformation work      62
Viscous dissipation      see “Dissipation”
Viscous length scale      129 146
Viscous scaling in spectrum      264
Viscous sublayer      58 158 263
Viscous transport      70 86 263
Viscous-convective subrange      283 284
Viscous-diffusive subrange      283 285
Vortex force      78
Vortex generator      58
Vortex stretching      2 40 48 59 75 83 91 256
Vortex tubes      102
Vorticity budget, approximate      88 91
Vorticity equation      76 81 256
Vorticity fluctuations      78
Vorticity of large eddies      41 48 69
Vorticity, mean      78
Vorticity-transfer theory      80 81 85
Wake function      162 173 188 194
Wall layer      see “Surface layer”
Wandering point      224 231 246
Wave-number vector      250
Wind-tunnel contraction      83 103
Wind-tunnel turbulence      7 70 230 242
Yaglom, A. M.      234
Yih.C. S.      143
Zel’dovitch, Ya. B.      136
Zero pressure gradient, boundary layer in      190
Zero wall stress      172
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте