Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Tennekes H., Lumley J.L. — A First Course in Turbulence
Tennekes H., Lumley J.L. — A First Course in Turbulence



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: A First Course in Turbulence

Авторы: Tennekes H., Lumley J.L.

Аннотация:

The subject of turbulence, the most forbidding in fluid dynamics, has usually proved treacherous to the beginner, caught in the whirls and eddies of its nonlinearities and statistical imponderables. This is the first book specifically designed to offer the student a smooth transitionary course between elementary fluid dynamics (which gives only last-minute attention to turbulence) and the professional literature on turbulent flow, where an advanced viewpoint is assumed. Moreover, the text has been developed for students, engineers, and scientists with different technical backgrounds and interests. Almost all flows, natural and man-made, are turbulent. Thus the subject is the concern of geophysical and environmental scientists (in dealing with atmospheric jet streams, ocean currents, and the flow of ivers, for example), of astrophysicists (in studying the photospheres of the sun and stars or mapping gaseous nebulae), and of engineers (in calculating pipe flows, jets, or wakes). Many such examples are discussed in the book. The approach taken avoids the difficulties of advanced mathematical development on the one side and the morass of experimental detail and empirical data on the other. As a result of following its midstream course, the text gives the student a physical understanding of the subject and deepens his intuitive insight into those problems that cannot now be rigorously solved. In particular, dimensional analysis is used extensively in dealing with those problems whose exact solution is mathematically elusive. Dimensional reasoning, scale arguments, and similarity rules are introduced at the beginning and are applied throughout. A discussion of Reynolds stress and the kinetic theory of gases provides the contrast needed to put mixing-length theory into proper perspective: the authors present a thorough comparison between the mixing-length models and dimensional analysis of shear flows. This is followed by an extensive treatment of vorticity dynamics, including vortex stretching and vorticity budgets. Two chapters are devoted to boundary-free shear flows and well-bounded turbulent shear flows. The examples presented include wakes, jets, shear layers, thermal plumes, atmospheric boundary layers, pipe and channel flow, and boundary layers in pressure gradients. The spatial structure of turbulent flow has been the subject of analysis in the book up to this point, at which a compact but thorough introduction to statistical methods is given. This prepares the reader to understand the stochastic and pectral structure of turbulence. The remainder of the book consists of applications of the statistical approach to the study of turbulent transport (including diffusion and mixing) and turbulent spectra.


Язык: en

Рубрика: Математика/Численные методы/Моделирование физических процессов/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1972

Количество страниц: 300

Добавлена в каталог: 20.02.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Accelerated diffusion      239
Acceleration of gravity      97 136
Acoustic noise      3
Active contaminants      see “Contaminant active”
Adiabatic atmosphere      97 136
Advection      120 123 131
Aliasing      248 281
Alternating tensor      76
Amplification of magnetic energy      93
Amplification of vorticity      75 83 92
Angular momentum, conservation of      41 83 103 256
Anisotropy      260 262 267 271
Asymptotic independence      113
Asymptotic invariance      5 187
Asymptotic matching      154 265
Atlantic Ocean      195
Atmospheric boundary layer      11 100 166 247
Atmospheric surface layer      100 168
Atmospheric thermals      136
Atmospheric turbulence      98
Autocorrelation      66 210
Autocorrelation of derivatives      215
Axisymmetric flows      104
Axisymmetric plumes      142
Axisymmetric wakes      118 127
Axisymmetricjets      130 144
Backward dispersion problem      236
Bakewell, H.P.      41
Bandwith      215
Batchelor, G.K.      7 84 96 195 230 253 263 285 287
Bernoulli equation      77
Blackadar, A. K.      102 168 169
Boundary-layer thickness      13 16 188
Bounded flow      224
Boussinesq approximation      97 136
Brunt — Vaisala frequency      99
Buffer layer      161
Bulk velocity      158 228 229 234
Buoyancy      3 7 9 48 50 98 136
Buoyancy time scale      99 102
Buoyant plumes      133 135
Buoyant production      97 100
Cascade in temperature spectrum      281 284
Cascade of energy      256 261 275
Central limit theorem      216 225 231
Central moments      199
Change-of-scale effect      80
Channel flow      149 233
Characteristic function      201 212 217 221 227
Chemical reactions      1 247
Circular cylinder      113 115
Circulation      195
Clauser, F. H.      187 188
Closure problem      4 33 44
Cole, J. D.      155
Coles, D.      163
Collision time scale      24 38
Comte — Bellot, G.      73
Concentration distribution      235 241
Concentration fluctuations      241
Constant-stress layer      54 81 85 151 156 169 185
Contaminant, active      97
Contaminant, dispersion of      235
Contaminant, microscale of      240
Contaminant, nondiffusing      236
Contaminant, pessive      33 50 52 95 194 235
Contaminant, spectrum of      279
Contaminant, spot of      238
Continuity equation      30 77 84 106 111 142 150 171 179 183 190 237
Control volume      60 62 64
Convective length scale      15
Convergence of averages      211 214
Cooling water      145
Core region      152 234
Coriolis force      12 78 166
Coriolis parameter      12 102 167
Correlated variables      30
Correlation      30 207
Correlation tensor      250
Corrsin, S.      13 23 68 73 96 97 192 229 232 233 255 269 278 283 284 286
Cosmic gas clouds      23 94
Couette flow      57 61
Covariance      207 232
Cross-product force      78
Cross-stream advection      135
Cross-stream integral scale      230 273
Cumulus cloud      1 25
Curl      76 82
Decay, time scale of      21 72 246
Deformation rate      60 76
Deformation work      3 60 64 257
Differential similarity law      55 148
Diffuser      195
Diffusion equation      8 33 230
Diffusion limit      226 229
Diffusion, molecular      9
Diffusion, turbulent      8 11
Diffusive length scale      15
Diffusivity of turbulence      2 8
Dimensional analysis      5 8 146
Dirac delta function      236
Discriminator circuit      198 213
dispersion      226 232 242 245
Dispersion length scale      43
Dispersion rate      43 47
Displacement thickness      7
Dissipation of energy      3 19 25 64 120 153 256 263 267 269
Dissipation of temperature fluctuations      95 282
Dissipation of vorticity      86
Dissipation range      263 276
Dissipation rate of energy      19 66 88 101 263
Dissipation spectrum      263 269 276
Distinguished limit      183
Divergence theorem      60
Double integral      220 232
Downstream integral scale      230 273
Drag coefficient      17 112
Drag reduction      195
Dwell circuit      203
Dynamic pressure      77
Eddy conductivity      99
Eddy diffusivity      10 143 195 226 245
Eddy size      258
Eddy viscosity      5 11 43 49 99 115 128 130 143 193 229
Edwards, S. F.      5
Ekman layer      167
Electric current density      93
Electrolytes      94
Empirical friction laws      192
Energy budget      63 71 74 101 120 123 153
Energy cascade      256 261 275
Energy spectrum      26 91 248
Energy transfer, from large to small scales      59 75 91 256
Energy-containing eddies      262 279
Entrainment      119 132 143 190 191
entropy      21
Equilibrium layer      178 183
Equilibrium range      91 262 276 281
Equilibrium theory, Kolmogorov’s      19 262
Equilibrium, absence of      6 49 120
Ergodicity      212
Eulerian characteristic function      227
Eulerian correlation      46
Eulerian integral scale      47 230 275 278
Eulerian time spectrum      274
Eulerian velocity      225 227 231
Evolving flows, transport in      241
Exchange coefficient      11 43 99 122
Falkner-Skan family      178
Far wakes      109
Filaments of contaminant      240
Filter function      215 219
Final period of decay      25 73 246 287
Finite integration time      211
First-order inertial sublayer      176
Flatness factor      200
Fluid point, particle      42 233
Flux Richardson number      98
Forward dispersion problem      236
Fourier transform      201 205 214 258 280
Friction coefficient      58 192 235
Friction Rossby number      170
Friction velocity      53 100 150 170 185
Friedlander, S. K.      20 45 262
Frozen-turbulence approximation      253
Fully developed flow      129 156
Gaseous nebulae      1 23 94
Gating circuit      197
Gaussian characteristic function      218
Gaussian probability distribution      218 225 231
Geostrophic wind      166 170
Gibson, C. H.      285
Gradient Richardson number      99
Gradient transport model      45 47 49 123 132
Gram — Charlier expansion      126
Gravity waves      3 75 99
Grid turbulence      71 72 230 242
Gulf Stream      1 15 195
Heat flux      34 97 100 194 243
Heat-flux integral      142 244
Hinze J. O.      49 51 54 58 66 160 215 253 263 281
Homogeneous turbulence      227
Hot-wire anemometer      26 132 207
Humphreys, H. W.      143
Imposed length scale      8 54
Imposed time scale      11
Independent samples      214
Index of refraction      22 225
Inertial scaling      264 268 284
Inertial sublayer      147 153 162 176 265
Inertial subrange      5 147 248 264
Inertial-convective subrange      283
Inertial-diffusive subrange      283
Initial period of decay      73 287
Inner scales      20
Inoue, E.      276
Instability      2 7
Integral scale      20 45 159 210 260
Integral scale of derivatives      216
Integral scale, Eulerian      47 230 275 278
Integral scale, existence of      212
Integral scale, Lagrangian      46 47 229 273 275 278
Integration time      215 218
INTERFACE      13 119 192
Intermediate limit      154
Intermittency      102 117 122 129 135 222
Interstellar gas clouds      23 94
Invariance      5 6 113 187
Irrotational flow      77 116 129 178
Isotropic random fields      66
Isotropic relations      253 263 272 281
Isotropic simple waves      254
Isotropic turbulence      66 252 275
Isotropy at small scales      74 96 253 262 276
Jeans, J.      34
Jet engine exhaust      144
Joint characteristic function      202 210
Joint moments      207
Joint probability density      207
Jointly Gaussian variables      232
Kaplun, S.      155
Karman constant      54 155 176 230
Karman, Th. von      44 155
Kinetic theory of gases      23 24 38
Kistler, A. L.      13 192
Knudsen number      23 38 45
Kolmogorov microscale      20 58 67 92 159 223 237 256 263 276 283
Kolmogorov spectrum      263
Kolmogorov velocity      20 263 276
Kolmogorov, A. N.      19 262 263
Kovasznay, L. S. G.      207
Kraichnan, R. H.      5
Kronecker delta      27 81
kurtosis      200 221
Laboratory average      213
Lagerstrom, P. A.      155
Lagrangian characteristic function      227
Lagrangian correlation      46 225 229 232
Lagrangian displacement integral      236
Lagrangian integral scale      46 229 241 273
Lagrangian spectrum      274
Lagrangian velocity      224 231 236 241
Lagrangian velocity variance      225 228 230 232 234
Laminar boundary layer      12 14 17
Laminar shear flow      34
Laminar sublayer      160
Law of the wake      153
Law of the wall      152 158 164 169 173 263
Limit cycle      6
Line vortex      195
Linearized boundary-layer equation      184 192
Liquid metals      94
Local isotropy      65 262 281
Local length scale      37 44 52 69 81 85 113
Logarithmic friction law      156 165 186
Logarithmic velocity profile      54 100 155 165 186 194
Logarithmic wind profile      169
Longitudinal correlation      251
Longitudinal integral scale      230 273
Longitudinal spectrum      251 255
Ludwieg, H.      186
Lumiey, J. L.      41 97 219 230 241 253 254 259
Mach number      23 33 38 97
Magnetic diffusivity      93
Magnetic fields      7 24 42 93
Magnetic mircoscale      94
Magnetic Reynolds number      7 94
Magnus effect      78
Maneuvering vehicle      127
Mass transfer      52
Matched layer      153
Matching      154 265
Mean free path      23 35 226
Meecham, W. C      5
Mercury      194 283
Microscale      211
Microscale Reynolds number      68
Millikan.C.B.      155
Mixing layer      10 104 128 129
Mixing length      5 43
Mixing length model      42 50 57 115 121 143 283 285
Mixing length theory      52 80 229 269
Moffatt, H. K.      230
Molecular diffusion      8 9 237 285
Molecular motion      36 39
Molecular time scale      10 24 38
Molecular transport      24 35 235
Moments of probability density      199
Momentum defect      15 111 124
Momentum flux      97 111 112 130 263
Momentum integral      111 124 157 196
Momentum mismatch      126
Momentum thickness      112 192 196
Monin, A. S.      100 234
Monin-Oboukhov length      100
Moving point      42 45 225 228
Multiple scales      14 146 155
Navier — Stokes equations      3 14 19 28 33 63 76 77 81 82
Neutral atmosphere      99 136 138
Newtonian fluids      4 27
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте