Авторизация
Поиск по указателям
Ames W.F. — Numerical methods for Partial Differential Equations
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Numerical methods for Partial Differential Equations
Автор: Ames W.F.
Аннотация: This volume is designed as an introduction to the concepts of modern numerical analysis as they apply to partial differential equations. The book contains many practical problems and their solutions, but at the same time, strives to expose the pitfalls — such as overstability, consistency requirements, and the danger of extrapolation to nonlinear problems methods used on linear problems. Numerical Methods for Partial Differential Equations, Third Edition reflects the great accomplishments that have taken place in scientific computation in the fifteen years since the Second Edition was published. This new edition is a drastic revision of the previous one, with new material on boundary elements, spectral methods, the methods of lines, and invariant methods. At the same time, the new edition retains the self-contained nature of the older version, and shares the clarity of its exposition and the integrity of its presentation.
Key Features
* Material on finite elements and finite differences have been merged, and now constitute equal partners
* Additional material has been added on boundary elements, spectral methods, the method of lines, and invariant methods
* References have been updated, and reflect the additional material
* Self-contained nature of the Second Edition has been maintained
* Very suitable for PDE courses
Язык:
Рубрика: Математика /Численные методы /Численный анализ /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Издание: Second Edition
Год издания: 1977
Количество страниц: 367
Добавлена в каталог: 18.02.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Longley, H. J. 217 228 239 312
Lowan, A. N. 194 228
Lower bounds, for nonlinear parabolic equations 339—342
Lozenge see “Computational molecules”
Ludford, G. S. S. 267 315
Lumped parameter problem 98
Lynch, R. E. 157 164
Lyusternik acceleration, relaxation form 119
Lyusternik, L. A. 119 162
Macagno, E. O. 289 317
Mackenroth, E. 259 314
Madsen, N. K. 304 319
Magneto-gas dynamics 270
Mann, W. R. 247 312
Manohar, R. 283(151) 316
Marching problems 5
Marchuk, G. 309 319
Marker and cell method, for Navier — Stokes equations 291—294
Marker and cell method, for Navier — Stokes equations, algorithms 292—294
Marker and cell method, for Navier — Stokes equations, instability 291
Marker and cell method, for Navier — Stokes equations, net 292
Marker and cell method, for Navier — Stokes equations, particles 293 294
Markhoff, W. 140 163
Martin, H. C 320(9) 348
Martin, R. E. 302(201a) 318
Martin, S. C 227(51) 229
Massau. J. 181
Matrix, consistent 120
Matrix, diagonal dominance 102
Matrix, nilpotent 108
Matrix, ordering 120—122
Matrix, property (A) 120
Matrix, reducible 104
Matrix, sparse 98
Matrix, Stieljes 150
Matrix, symmetric 109
Matrix, tridiagonal 151
Max norm 196
Maximum modulus theorems 93
Maximum principle for parabolic equations 337—340
Maximum principle in error analysis 44
McGuire, G. R. 222 225 229
McHenry, D. 320 348
Membrane eigenvalue problem 246 247
Mesh, point ordering 105
Mesh, refinement 214
Mesh, region 276
Method, characteristics 3 170
Method, explicit 193—196
Method, lines 3 302—304
Method, natural 3
Metropolis, N. C. 263(93) 314
Meyer, H. A. 300 301 318
Midpoints application 205
Mikeladze, Sh. 30 40
Mikhlin, S. G. 304 319 333 335 336 349 350
Miller, E. L. 87 91
Milne, W. E. 15 40 46 90 233 234 311
Milne-Thompson, L. M. 20 40
Mitchell, A. R. 156 157 163 164 255 313
Mitrinovic, D. S. 339 350
Mixed systems 270—274
Modulus of precision 26
Moments, method of 323
Momentum equations, conservation form 291
Monte Carlo methods 299—302
Monte Carlo methods, difference equations 300 302
Monte Carlo methods, random walk 300 301
Moon, P. 3 39 46 90 246 312
Morawetz, C. S. 263 315
Morimoto, H. 271 272 315
Morris, J. 219 221 225 226(49) 229 265 315
Morton, K.W. 200 208 211 215 224(18) 228 228 238 239 242 260 263 265 272 312
Moser, H. 159 164
Motz, H. 234 235 250 311 313
Moving threadline equations 176
Nagumo — Westphal lemma 339
Nagumo, M. 339 350
Natural finite difference, for parabolic equations 50
Natural methods 3
Navier — Stokes equations 281—299
Navier — Stokes equations, Boussinesq approximation 282
Navier — Stokes equations, exact solution 282
Navier — Stokes equations, momentum 284
Navier — Stokes equations, primitive variable methods 283 291—294
Navier — Stokes equations, stream function-vorticity methods 283—291
Navier — Stokes equations, vector potential methods 283 294—298
Network, choice of 33 34
Neumann problem 94
Newmark, N. M. 320 348
Newton method 259
Nicolson, P. 50 70 91
Ninham, B. W. 300 302 318
Noble, B. 283(151) 316
Noh, W. F. 263 315
Non-Newtonian fluids 159
Nonlinear elliptic equation 90
Nonlinear elliptic equation, nonlinear over-relaxation 258
Nonlinear examples, heat conduction 159
Nonlinear examples, magnetostatics 159
Nonlinear examples, turbulent free convection 159
Nonlinear over-relaxation for elliptic equations 256—259
Nonlinear over-relaxation, applications 258
Nonlinear parabolic equations, Crank — Nicolson method 84 85
Nonlinear parabolic equations, predictor-corrector methods 85—88
Nonlinearity, nature of 261
Nonuniform mesh, irregularly shaped regions 275
Nonuniform mesh, mesh point 277
Norm 115 333
Norm, Euclidean 115
Norm, spectral 115
Normal derivative, approximation of by false boundary 33
Norrie, D. H. 342 350
Norton, H. J. 325 349
Notation, information suppressing 11
Number of iterations for convergence 114 118
Numerical methods survey (Giese) 282
Numerical procedure, natural 170
Oden, J. T. 320 320(14) 343 348 349
Oliger, J. 299 318
Operator, biharmonic 18
Operator, Laplace 18
Operator, positive 245 334
Operator, positive definite 245 334
Operator, vector Laplacian 296
Orcutt, G. H. 301
Order notation 2
Ordering, consistent 258
Ordering, points 125
Orszag, S. A. 299 307 318 319
Orthogonal collocation 325—329
Orthogonal functions 334
Orthogonal polynomials 326
Orthogonal polynomials, Chebyshev 326
Orthogonal polynomials, Hermite 326
Orthogonal polynomials, Laguerre 326
Orthogonal polynomials, Legendre 326
Oscillations, nonlinear string 10
Ostrowski, A. M. 113 162 249 313
Over-relaxation parameters, determination 134
Over-relaxation parameters, experimental 134
Over-relaxation parameters, optimum 123—125
Over-relaxation, nonlinear 256—259
Overlapping steps 55
Overstability, hyperbolic equations 197—199
O’Brien, G. G. 2 39 50 51 91 200 228
Padmanabhan, H. I. 131 162
Padmanabhan, M. 227 229 283 294 317
Parabolic equations 4 64
Parabolic equations, alternating direction 252—255
Parabolic equations, explicit method 42—46
Parabolic equations, generalization of elementary methods 251 252
Parabolic equations, implicit method 42
Parabolic equations, reducible error 69
Parabolic equations, several space variables 251—255
Parabolic equations, variable coefficients 65
Parameter, relaxation 106
Parter, S. V. 274 315
Payne, R. B. 217 228 283 284 316
Peaceman — Rachford method 151
Peaceman, D. W. 52(25) 91 149 150 151 154 163 252 313
Pearcy, C. 156(71) 163 255(56) 255 313
Pearson, C. E. 290 294 317
Phillip, J. R. 159 164
Phillips, H. B. 1 39
Phillips, N. A. 260 314
Physical problems, classification 3—5
Pian, T. H. H. 344 350
Plane strain 275
Plane stress 275
plasma 271
Plastic bar, compression 10 192
Pogorelov, A. V. 260 314
Pohlhausen, K. 323 349
Point iterative methods, convergence rates 107 144
Point iterative methods, Gauss — Seidel (single steps) 104
Point iterative methods, gradient method 135 136
Point iterative methods, Richardson 136
Point iterative methods, semi-iterative 139—143
Point iterative methods, simultaneous displacements (total steps) 103
Point iterative methods, successive displacements (single steps) 105
Point iterative methods, total steps (Jacobi method) 103
Pointwise stability 198
Poisson equation 97
Poisson equation for pressure 291
Poisson equation, Fourier analysis cyclic reduction 306 307
Poisson equation, interior singularity 232
Poisson equation, scalar 297
Poisson equation, vector 297
Poisson — Euler — Darboux equation 180
Polynomials, Chebyshev 137 326
Polynomials, Hermite 326
Polynomials, Laguerre 326
Polynomials, Legendre 326
Polytropic gas 268
Positive definite operator 112 114 334
Positive operator 112 334
Potential scalar 295
Potential vector 295—298
Potential, quasi- 295 296
Power method 248 249 251
Power method, convergence 248 249
Power method, properties 248
Prager, M. 277(136) 316 336(48) 350
Prager, W. 320 348
Prandtl, L. 97 161
Predictor-corrector, unconditional stability 88
Pressure equation 284
Pressure equation, Poisson form 291
Priestly, C. H. B. 159 164
Primitive variable method, marker and cell 291—294
Propagation problems 3
Properly posed problems 263
Property (A) 258
Protter, M. H. 336 337 350
Pseudoviscosity 222 240 241 244
Pujol, A. 283 289 294 317
Putre, H. A. 291 318
Quasilinear elliptic equation, semi-explicit technique 259
Quasilinear equations 42 167
Quasilinear equations, first-order 5
Quasilinear equations, parabolic 84
Quasilinear equations, second-order 7
Quasilinear equations, stress wave propagation 177
Quasilinear system 170—175
Quasilinear system, canonical equations 171 173 174
Quasilinear system, characteristics 173
Quasilinear system, normal form 173
Quasipotential 295
Quasipotential, existence of 296
Quenching, nonlinear parabolic equation 339
Quenching, nonlinear parabolic equation, approximate solution for 339—342
Quenching, nonlinear parabolic equation, upper and lower bounds 340—342
Rachford, H. H. 52(25) 91 149 150 153 154 163 252 255 313
Random numbers, generation 301
Random walk 300 301
Rate of convergence 114—118
Rate of convergence, average 137
Rate of convergence, best 110
Rayleigh, 3rd Baron (Strutt, J. W.) 324 349
Real gas, transonic flow 10
Reducible system 10 181 265
Rees.M. 209(28) 211(28) 214(28) 219(28) 228
Reich, E. 113 162
Reid, J. K. 125 164
Relaxation 2
Relaxation factor, variable 141
Relaxation, over- 98
Relaxation, under- 98
Research journals, numerical analysis 1 299
Rice, J. D. 52(25) 91
Rice, J. R. 157 164
Richardson, D. J. 263 314
Richardson, L. F. 1 2 5 39 55 91 136 137 163 247 313
Richardson’s method, application 138
Richardson’s method, convergence rate 138
Richardson’s method, round-off errors 138
Richtmyer, R. D. 29 40 46 56 59 62 73 74 90 200 207 208 211 215 219 220(18) 224(18) 228 239 242 260 264 265 272 312 315
Riemann invariants 179 180 266 268
Rigler, A. K. 125 164 275(133) 316
Riley, J. D. 249(46) 313
Rimon, Y. 290 318
Ritz method see “Stationary functional method”
Ritz, W. 324 349
Rivlin, A. M. 301(202) 318
Roache, P. J. 283 287 288 289 291 294 299 317
Rosenberg, R. L. 111 162
Rosenhead, L. 77 91
Ross, L. L. 290(179) 318
Round-off error, analysis by probability 25—28
Rounding, even rule 27
Rudge, C. 1
Rutherford, D. E. 59 91
Rutishauser, H. 275(130) 316
Sakurai, A. 283(151) 316
Samarskii, A. A. 283 317
Sauer, R. 183 228
Scalar product 333
Schechter, S. 256 313
Schlichting, H. 77 91
Schmidt, E. 2 39
Schulz, W. D. 241 263 312 314
Secrest, D. 326 349
Seidel, L. 104 112 162
Semi-implicit method of Chorin 294
Semi-iterative method, average convergence rate 141
Semi-iterative method, cyclic Chebyshev 142 143
Semi-iterative method, symmetric successive over-relaxation 143
Separation of variables, for partial difference equations 46 250
Serrin, J. 159 164
Shannon, J. P. 291(182) 318
Shapiro, A. H. 8 39
Shaw, F. S. 33 40
Sheldon, J. 143 163
Shell analysis, finite differences 274
Shocks 212 238
Shortley, G. H. 30 40 137 163
Simple waves 185 186 188
Simple waves, centered 188
Simpson, J. H. 77 91
Реклама