Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Bayfield J.E. — Quantum Evolution: An Introduction to Time-Dependent Quantum Mechanics
Bayfield J.E. — Quantum Evolution: An Introduction to Time-Dependent Quantum Mechanics



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Quantum Evolution: An Introduction to Time-Dependent Quantum Mechanics

Àâòîð: Bayfield J.E.

Àííîòàöèÿ:

A unique introduction to the concepts of quantum mechanics, Quantum Evolution addresses the present status of time-dependent quantum mechanics for few-body systems with electromagnetic interactions. It bridges between the quantum mechanics of stationary quantum systems and a number of recent advanced theoretical treatises on various aspects of quantum mechanics. The focus is on strongly-quantum and semi-classical systems, including the quantum manifestations of orderly and chaotic nonlinear classical dynamics.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 1 edition

Ãîä èçäàíèÿ: 1999

Êîëè÷åñòâî ñòðàíèö: 386

Äîáàâëåíà â êàòàëîã: 11.04.2010

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Lateral heterostructure      (see Heterostructures lateral semiconductor)
Level crossing system, calculation of evolution, GWD — PI      345 — 347
Level crossing system, calculation of evolution, polynomial-propagator SPO      344 — 345
Level crossing system, calculation of evolution, representation-switching SPO      345
Level crossing system, calculation of evolution, SPO FFT-grid      344 — 345
Level crossing system, calculation of evolution, wavepacket      282 — 285
Level crossing(s), avoided      205 — 207 278-281
Level crossing(s), effective width of region      278 281
Level crossing(s), energy      278 — 281
Level crossing(s), quasienergy, avoided      286 — 287 295 297 299 304
Level crossing(s), sets of      285 — 287
Level-separation distributions      205 — 207 (see also Statistics energy
Linearization      72 — 73 74-75 137
Liouville equation      24 31
Liouville’s theorem      5 — 7
Local scientific computing      312 — 314
Localization, quantum on sets of nested tori      (see Energy eigenstate(s) quantum regular)
Localization, quantum, Anderson      262
Localization, quantum, dynamical      261 — 263 290
Localization, quantum, near unstable periodic orbits      (see Energy eigenstate(s) quantum scarred)
Lyapunov exponent(s)      107 — 111 118-119 180 186 208
Lyapunov exponent(s), algorithm for      320 — 321
Lyapunov functions      108 110 118
Manifold(s), Lagrangian      (see Lagrangian surface)
Manifold(s), stable and unstable      74 113 114 133 135 209
Maslov index      19 92 183 185
Mass, effective      54 147 241
Matched asymptotic expansions, method of      271
Mathieu equation      93 — 94 235
Mathieu functions      203 235
Mathieu index      94 96 242 243
Matrix diagonalization, direct      348 — 350 (see also Hamiltonian matrix diagonalization
Matrix elements      3 10 34 58 184
Matrix elements, diagonal      3
Matrix elements, displaced      39
Matrix elements, electric dipole      296 350
Matrix, adiabatic potential energy      278 279 9.7a) 280
Matrix, adiabatic radial momentum      278 279 280
Matrix, coupling      11 292
Matrix, hermitian      228
Matrix, RWA Hamiltonian      301
Matrix, unitary      277
Mean energy      95 (Fig. 4.2) 96 128 332
Mean energy of Floquet state      165 230 235 238 239 240 245
Mean value of operator      3
Message-passing software      312
Method of averaging      266 — 267
Methods, numerical      (see Numerical methods)
Microwave ionization, of Rydberg atoms      (see Hydrogen atom(s) in ionization
Midpoint method, second order      315
Modulation of quantum states by oscillating electric field      220 (Fig. 8.1a) 220
Modulation of quantum states by oscillating potential      220 220
Modulation of quantum states of quantum tunneling      221 — 224
Modulation of quantum states, external      220 — 224
Molecular dissociation      (see Dissociation molecular)
Molecular representation      111
Molecular representation, adiabatic      277 — 281
Molecular representation, standard diabatic      211 344 345
Molecular representation, switching, adiabatic-diabatic      345
Molecule, diatomic      (see Diatomic molecule)
Monodromy matrix      74 137 191 323
Monodromy matrix method for periodic orbits      323 — 325
Monodromy matrix, one-period      75 137
Monodromy matrix, reduced      76
Morse index      183
Morse oscillator, driven      (see Driven Morse oscillator)
MQW      (see Multi — quantum-well structure)
Multi-quantum-well (MQW) structure      55 (see also Heterostructures)
Multiple shooting method      323
Multistep methods for iterating ordinary, differential equations      316 — 318 378
nanotechnology      53 194 211 217 348
Nearl      1 — d experiments 249-251 274-275
Newton      322 — 323
Newton method for finding zeros of a function      322 — 323
Newton — Raphson root-search      17 106 323 324
Newton — Raphson root-search method      17 106 323 324
Newton — Raphson root-search, one-step      314 — 315
Nonadiabatic coupling in diatomic molecular systems      278 — 281 282
Nonadiabatic coupling in surface-hopping molecular systems      346
Nonadiabatic transitions, classical      270 — 276
Nonadiabatic transitions, quantum      281 — 282
Nonautonomous system      7 57
Nonlinear resonance      93 105 138 234-236
Nonlinear resonance trapping, during field pulsing      251
Nonlinear resonance, during frequency chirping      267 — 270
Nonlinear resonance, external      138. 166. 234 — 236 267
Nonlinear resonance, internal      138 — 142 142-144
Nonlinear resonance, quantum      142 — 144 169 234-236.
Numerical methods for iterating ordinary differential equations      314 — 320
Numerical methods for locating periodic orbits      321 — 325
Numerical methods, altemating-direction implicit (ADI)      336
Numerical methods, Askar — Cakmak (AC)      336
Numerical methods, basis-set expansion      10 — 11 45 68 176 188
Numerical methods, collocation      338 — 339
Numerical methods, complex coordinate rotation (CCR)      176 — 177 255. 350-352
Numerical methods, continuation      325
Numerical methods, Crank — Nicholson (CN)      334 — 335
Numerical methods, FFT grid      31 120 144 255 283 308
Numerical methods, finite-difference second-order differencing      336
ODE(s)      (see Ordinary differential equation(s))
One-step method for iterating ODEs      314 — 315
Operator, quantum      2
Operator, quantum propagation      (see Propagator theoretical)
Operators, destruction and creation      10 64
Optimal control theory      306
Orbit      (see also Trajectory)
Orbit, elliptic, eccentricity of      42 (Fig 2 46
Orbit, periodic      (see Periodic orbit)
Orbit, quasiperiodic      34 — 35 123 202 253
Orbit, stability of      (see Orbital stability)
Orbit, winding number of      35 186
Orbital stability, of trajectory      22 74 132 186
Ordinary differential equation(s) (ODEs)      9 — 10 51 58 60 72 266
Ordinary differential equation(s), discretization of      314 — 315
Ordinary differential equation(s), Euler      307
Ordinary differential equation(s), multistep methods for iterating      316 — 318
Ordinary differential equation(s), predictor-corrector methods for iterating      317 — 318 325
Ordinary differential equation(s), stiff sets of      318 — 319
Ordinary differential equation(s), time-periodic      224 — 225
Oscillator(s) coupled, 1-d      (see Quartic oscillator 1-d)
Oscillator(s) coupled, 2-d      (see Quartic oscillator 2-d)
Oscillator(s) coupled, cubic 1—d      114 120 144
Oscillator(s) coupled, driven Kepler 1-d      (see Driven Kepler oscillator)
Oscillator(s) coupled, driven Morse      (see Driven Morse oscillator)
Oscillator(s) coupled, driven quartic      (see Driven quartic oscillator)
Oscillator(s) coupled, harmonic      (see Harmonic oscillator)
Oscillator(s) coupled, Kepler      (see Hydrogen atom(s))
Oscillator(s) coupled, Morse      (see Morse oscillator)
Oscillator(s) coupled, quartic      165
Overlap intensities      214 — 215
Parametric switching adiabatic of classical systems      265 — 270
Parametric switching adiabatic of Floquet states      290 — 296 302-306
Parametric switching adiabatic of three-level systems      301 — 306
Parametric switching adiabatic of two-level systems      296 — 301
Parametric switching adiabatic, controlled of dynamical systems      306 — 308 325
Parametric switching adiabatic, controlled of quantum systems      308 — 311
Parametric switching adiabatic, nonadiabatic, of classical systems      270 — 275
Paraxial-ray approximation      353
Path integral (PI) method, Gaussian wavepacket      345 — 347
Path integral expression for the propagator      159 — 160
Path integral theory      135 — 136 138 156-161
Path integral theory for tunneling      161 — 162 164 169
Path integral theory, phase space representation      189
Path integral theory, semiclassical      136 — 138 160-162 182-187
PCS      (see Personal computers)
Peaceman — Rachford (PR)      336 — 337
Peaceman — Rachford (PR) method      336 — 337
Pendulum approximation, classical      141 — 142 169 234 269 274
Pendulum approximation, quantum      142 169 242 287 quantum)
Pendulum, vertical in stadium billiards      215 — 216
Pendulum, vertical, ballistic electron      213 (Fig. 7.31)
Pendulum, vertical, bifurcation of      (see Bifurcation periodic
Pendulum, vertical, classical      36 — 37 73-74 84 92-96 112-113 141
Pendulum, vertical, driven      233 (Table 8.1) 234
Pendulum, vertical, guiding central      (see Wavepacket guidance
Pendulum, vertical, Kepler      41 — 43 174
Pendulum, vertical, numerical location of      321 — 325
Pendulum, vertical, quantum      84 (Fig. 3.1) 92 106 287
Pendulum, vertical, searching for, along symmetry lines      131 — 132
Pendulum, vertical, skipping      197
Pendulum, vertical, stable      76 139 of
Pendulum, vertical, unstable      76 135 245 246 253 of
Pendulum, vertical, whispering gallery      212 (Fig. 7.30)
Periodic orbit      16 35 133 199 7.17)
Periodic orbit theory      (see also Path integral theory semiclassical)
Periodic orbit theory, applicability of      188 189 7.10) 190
Personal computers, parallel cluster of      312
Perturbation theory, adiabatic canonical      266
Perturbation theory, canonical      105
Perturbation theory, near-adiabatic      266 267
Perturbation theory, superconveigent      106
Phase curve      (see Invariant curve)
Phase errors, numerical, accumulated      341 343
Phase loss      18 19
Phase space, classical structure in      34 — 36 (see also Chaotic trajectory Global KAM Lagrangian Manifolds Periodic Quasiperiodic Separatrix)
Phase space, classically accessible area of      339
Phase space, complexified      162 163
Phase space, extended (generalized)      7 165 226 230-231 245
Phase space, n-dimensional (n — D)      4
Phase space, numerical grids in      339
Phase space, quantum distributions in      (see Phase — space probability distribution quantum)
Phase space, resonance moving in      268
Phase space, SPO calculations in      341
Phase space, tunneling in      163 — 169
Phase-space area, in Poincare section      209 270
Phase-space flow      5
Phase-space monodromy matrix      191
Phase-space portrait      21 166 Poincare stroboscopic)
Phase-space portrait, Huisimi      (see Huisimi distribution function)
Phase-space portrait, Wigner      (see Wigner phase — space distribution function)
Phase-space representations, quantum      23 — 24 31-34 184 189 341
Phase-space Schrodinger equation      31
Phase-space trajectory      5 — 6 21 74 Periodic Quasiperiodic
Phase-space velocity      5
Phase-space velocity function      4
Phonon      194 195
Photoabsorption spectrum      178 — 180 188 190
Photoionization, detection by      49
Photoluminescence spectra      55
Photon quasiprobability function      (see Q — function pliase
Photon sidebands, microwave-induced      220 — 224
Photon state, coherent      64 — 65 65-70
Photon wavepacket      64 — 66
Photon-number eigenstate      10
Photon-number operator      9 — 10
PI      (see Path integral method)
Planck’s constant, scaled, dimensionless      8 19 98 237 241
Poincare map      22 35 118
Poincare section      21 — 23 35
Poincare section, examples of      104 (Fig. 5.1) 112 114 117 128 2 164 175 198 203 205
Poincare section, quantum      30 — 31
Poincare section, stroboscopic      231
Poincare — Birkhoff theorem      105
Point contact leads      211 213 214 221 223
Point of unstable equilibrium      (see Fixed point unstable)
Poisson bracket      5
Poisson level-separation distribution      206 288
Poisson matrix      5
Polarization vector      61
Population inversion      290 — 291 296
Population inversion, area theorem for population inversion      291
Population inversion, inversion time, resonant      228
Population inversion, time evolution of      60 66 298 9 302
Population transfer, A system      301 (Fig 9 303
Population transfer, ladder system      301 (Fig 9.20a) 302
Population transfer, three-state      301 — 306
Population transfer, V system      301 (Fig. 9.20c)
Potential barrier system      145 — 151 163 Double particle Tunnel Tunneling)
Potential barrier, classical action integral under      (see Tunneling action)
Potential barrier, rectangular      146 (Fig. 6.1a) 147 342
Potential barrier, wavepacket incident on      150 151 6.2)
Potential coupling, diabatic      279 (Fig. 9.7b) 280 282 283 284
Potential modulation      220 (Fig. 8.1b)
Potential well, particle in, shooting method for      347
Potential, double — well      (see Double-well potential particle)
Potential-energy function, diabatic      279 (Fig. 9.7b) 280
Potential-energy matrix, adiabatic      278 279 280 9.8a)
PR method      (see Peaceman — Rachford method)
Predictor formula      317
Predictor formula, Adams — Bashforth four-step      317
Predictor — corrector methods for iterating ordinary, differential equations      317 — 318 325
Probability distribution, particle mass, classical      33 (Fig. 1.12) 238
Probability distribution, particle mass, classical-quantum comparisons      99 (Fig. 4.4) 3 124
Probability distribution, particle mass, diffusive      259 — 263
Probability distribution, particle mass, obtained from quantum irregular Floquet states      240 — 241
Probability distribution, particle mass, quantum      2 184 246 309 quantum)
Probability flow velocity in coordinate space      13
Probability, survival      259
Propagation method, semiclassical reference, trajectory      50 — 53 (see also Reference trajectories)
Propagator, nFloquet      224 226 229 344
Propagator, nglobal      342
Propagator, npath integral expression for      159 — 160
Propagator, nphase-space      31
Propagator, npolynomial      344 — 345
Propagator, nsemiclassical      182 — 183 189
Propagator, nsemiclassical, matrix elements of      190 — 192
Propagator, nsemiclassical, phase — space coherent-state representation      189
Propagator, nsplit-operator (SPO)      340 — 341
Propagator, ntheoretical      157 — 160
Propagator, numerical, altemating-direction      336
Propagator, numerical, Crank — Nicholson (CN)      334
Pseudocrossing time      270 273
Pseudospectral time-propagation method      337. 341
Q-function, phase-space      65 — 66 69
Quadrature formulas      352
Quantization, Bohr — Sommerfeld      16 — 17 133 232
Quantization, EBK      (see EBK quantization)
Quantization, first      9 87
Quantization, second      9 — 10
Quantization, WKB      (see Bohr — Sommerfeld)
Quantum adiabatic criterion      296
Quantum adiabatic population inversion      (see Population inversion)
Quantum adiabatic theorems      296
Quantum chaos      122 — 123
Quantum dot      54 210 221-224
Quantum dot, open      211 — 213
Quantum dot, stadium billiards      215 — 216
Quantum effect, intrinsically-      39. 102
Quantum energy eigenstate(s)      (see Energy eigenstate(s) quantum)
Quantum localization      (see Localization quantum)
Quantum nonlinear resonance      (see Nonlinear resonance quantum)
Quantum observables, canonical      87
Quantum operators      2
Quantum pendulum      (see Pendulum quantum)
Quantum phase — space probability distribution      (see Phase — space probability distribution quantum)
Quantum Poincare section      (see Poincare section quantum)
Quantum separatrix crossing      (see Separatrix crossing quantum)
quantum states      (see Energy eigenstate(s) quantum)
Quantum transient diffusion      259 — 260 260
Quantum tunneling      (see Tunneling)
Quantum well      54 — 57 55 196
Quantum well in tilted magnetic field      197 — 200
Quantum well, biased      193 194 195 196
Quantum well, driven charged particle dynamics in      232 — 234 241
Quantum well, shooting methods for basis sets      348
Quantum well, structure, multiple      56 (Fig. 2.9) (see also Heterostructures lateral semiconductor)
quantum wire      54 217
Quantum-classical comparisons      40
Quantum-classical comparisons, 2-d      131 — 134 187
Quantum-classical comparisons, examples of      46 47 99 123 124 263
1 2 3 4 5
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå