|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Bayfield J.E. — Quantum Evolution: An Introduction to Time-Dependent Quantum Mechanics |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Lateral heterostructure (see Heterostructures lateral semiconductor)
Level crossing system, calculation of evolution, GWD — PI 345 — 347
Level crossing system, calculation of evolution, polynomial-propagator SPO 344 — 345
Level crossing system, calculation of evolution, representation-switching SPO 345
Level crossing system, calculation of evolution, SPO FFT-grid 344 — 345
Level crossing system, calculation of evolution, wavepacket 282 — 285
Level crossing(s), avoided 205 — 207 278-281
Level crossing(s), effective width of region 278 281
Level crossing(s), energy 278 — 281
Level crossing(s), quasienergy, avoided 286 — 287 295 297 299 304
Level crossing(s), sets of 285 — 287
Level-separation distributions 205 — 207 (see also Statistics energy
Linearization 72 — 73 74-75 137
Liouville equation 24 31
Liouville’s theorem 5 — 7
Local scientific computing 312 — 314
Localization, quantum on sets of nested tori (see Energy eigenstate(s) quantum regular)
Localization, quantum, Anderson 262
Localization, quantum, dynamical 261 — 263 290
Localization, quantum, near unstable periodic orbits (see Energy eigenstate(s) quantum scarred)
Lyapunov exponent(s) 107 — 111 118-119 180 186 208
Lyapunov exponent(s), algorithm for 320 — 321
Lyapunov functions 108 110 118
Manifold(s), Lagrangian (see Lagrangian surface)
Manifold(s), stable and unstable 74 113 114 133 135 209
Maslov index 19 92 183 185
Mass, effective 54 147 241
Matched asymptotic expansions, method of 271
Mathieu equation 93 — 94 235
Mathieu functions 203 235
Mathieu index 94 96 242 243
Matrix diagonalization, direct 348 — 350 (see also Hamiltonian matrix diagonalization
Matrix elements 3 10 34 58 184
Matrix elements, diagonal 3
Matrix elements, displaced 39
Matrix elements, electric dipole 296 350
Matrix, adiabatic potential energy 278 279 9.7a) 280
Matrix, adiabatic radial momentum 278 279 280
Matrix, coupling 11 292
Matrix, hermitian 228
Matrix, RWA Hamiltonian 301
Matrix, unitary 277
Mean energy 95 (Fig. 4.2) 96 128 332
Mean energy of Floquet state 165 230 235 238 239 240 245
Mean value of operator 3
Message-passing software 312
Method of averaging 266 — 267
Methods, numerical (see Numerical methods)
Microwave ionization, of Rydberg atoms (see Hydrogen atom(s) in ionization
Midpoint method, second order 315
Modulation of quantum states by oscillating electric field 220 (Fig. 8.1a) 220
Modulation of quantum states by oscillating potential 220 220
Modulation of quantum states of quantum tunneling 221 — 224
Modulation of quantum states, external 220 — 224
Molecular dissociation (see Dissociation molecular)
Molecular representation 111
Molecular representation, adiabatic 277 — 281
Molecular representation, standard diabatic 211 344 345
Molecular representation, switching, adiabatic-diabatic 345
Molecule, diatomic (see Diatomic molecule)
Monodromy matrix 74 137 191 323
Monodromy matrix method for periodic orbits 323 — 325
Monodromy matrix, one-period 75 137
Monodromy matrix, reduced 76
Morse index 183
Morse oscillator, driven (see Driven Morse oscillator)
MQW (see Multi — quantum-well structure)
Multi-quantum-well (MQW) structure 55 (see also Heterostructures)
Multiple shooting method 323
Multistep methods for iterating ordinary, differential equations 316 — 318 378
nanotechnology 53 194 211 217 348
Nearl 1 — d experiments 249-251 274-275
Newton 322 — 323
Newton method for finding zeros of a function 322 — 323
Newton — Raphson root-search 17 106 323 324
Newton — Raphson root-search method 17 106 323 324
Newton — Raphson root-search, one-step 314 — 315
Nonadiabatic coupling in diatomic molecular systems 278 — 281 282
Nonadiabatic coupling in surface-hopping molecular systems 346
Nonadiabatic transitions, classical 270 — 276
Nonadiabatic transitions, quantum 281 — 282
Nonautonomous system 7 57
Nonlinear resonance 93 105 138 234-236
Nonlinear resonance trapping, during field pulsing 251
Nonlinear resonance, during frequency chirping 267 — 270
Nonlinear resonance, external 138. 166. 234 — 236 267
Nonlinear resonance, internal 138 — 142 142-144
Nonlinear resonance, quantum 142 — 144 169 234-236.
Numerical methods for iterating ordinary differential equations 314 — 320
Numerical methods for locating periodic orbits 321 — 325
Numerical methods, altemating-direction implicit (ADI) 336
Numerical methods, Askar — Cakmak (AC) 336
Numerical methods, basis-set expansion 10 — 11 45 68 176 188
Numerical methods, collocation 338 — 339
Numerical methods, complex coordinate rotation (CCR) 176 — 177 255. 350-352
Numerical methods, continuation 325
Numerical methods, Crank — Nicholson (CN) 334 — 335
Numerical methods, FFT grid 31 120 144 255 283 308
Numerical methods, finite-difference second-order differencing 336
ODE(s) (see Ordinary differential equation(s))
One-step method for iterating ODEs 314 — 315
Operator, quantum 2
Operator, quantum propagation (see Propagator theoretical)
Operators, destruction and creation 10 64
Optimal control theory 306
Orbit (see also Trajectory)
Orbit, elliptic, eccentricity of 42 (Fig 2 46
Orbit, periodic (see Periodic orbit)
Orbit, quasiperiodic 34 — 35 123 202 253
Orbit, stability of (see Orbital stability)
Orbit, winding number of 35 186
Orbital stability, of trajectory 22 74 132 186
Ordinary differential equation(s) (ODEs) 9 — 10 51 58 60 72 266
Ordinary differential equation(s), discretization of 314 — 315
Ordinary differential equation(s), Euler 307
Ordinary differential equation(s), multistep methods for iterating 316 — 318
Ordinary differential equation(s), predictor-corrector methods for iterating 317 — 318 325
Ordinary differential equation(s), stiff sets of 318 — 319
Ordinary differential equation(s), time-periodic 224 — 225
Oscillator(s) coupled, 1-d (see Quartic oscillator 1-d)
Oscillator(s) coupled, 2-d (see Quartic oscillator 2-d)
Oscillator(s) coupled, cubic 1—d 114 120 144
Oscillator(s) coupled, driven Kepler 1-d (see Driven Kepler oscillator)
Oscillator(s) coupled, driven Morse (see Driven Morse oscillator)
Oscillator(s) coupled, driven quartic (see Driven quartic oscillator)
Oscillator(s) coupled, harmonic (see Harmonic oscillator)
Oscillator(s) coupled, Kepler (see Hydrogen atom(s))
Oscillator(s) coupled, Morse (see Morse oscillator)
Oscillator(s) coupled, quartic 165
Overlap intensities 214 — 215
Parametric switching adiabatic of classical systems 265 — 270
Parametric switching adiabatic of Floquet states 290 — 296 302-306
Parametric switching adiabatic of three-level systems 301 — 306
Parametric switching adiabatic of two-level systems 296 — 301
Parametric switching adiabatic, controlled of dynamical systems 306 — 308 325
Parametric switching adiabatic, controlled of quantum systems 308 — 311
Parametric switching adiabatic, nonadiabatic, of classical systems 270 — 275
Paraxial-ray approximation 353
Path integral (PI) method, Gaussian wavepacket 345 — 347
Path integral expression for the propagator 159 — 160
Path integral theory 135 — 136 138 156-161
Path integral theory for tunneling 161 — 162 164 169
Path integral theory, phase space representation 189
Path integral theory, semiclassical 136 — 138 160-162 182-187
PCS (see Personal computers)
Peaceman — Rachford (PR) 336 — 337
Peaceman — Rachford (PR) method 336 — 337
Pendulum approximation, classical 141 — 142 169 234 269 274
Pendulum approximation, quantum 142 169 242 287 quantum)
Pendulum, vertical in stadium billiards 215 — 216
| Pendulum, vertical, ballistic electron 213 (Fig. 7.31)
Pendulum, vertical, bifurcation of (see Bifurcation periodic
Pendulum, vertical, classical 36 — 37 73-74 84 92-96 112-113 141
Pendulum, vertical, driven 233 (Table 8.1) 234
Pendulum, vertical, guiding central (see Wavepacket guidance
Pendulum, vertical, Kepler 41 — 43 174
Pendulum, vertical, numerical location of 321 — 325
Pendulum, vertical, quantum 84 (Fig. 3.1) 92 106 287
Pendulum, vertical, searching for, along symmetry lines 131 — 132
Pendulum, vertical, skipping 197
Pendulum, vertical, stable 76 139 of
Pendulum, vertical, unstable 76 135 245 246 253 of
Pendulum, vertical, whispering gallery 212 (Fig. 7.30)
Periodic orbit 16 35 133 199 7.17)
Periodic orbit theory (see also Path integral theory semiclassical)
Periodic orbit theory, applicability of 188 189 7.10) 190
Personal computers, parallel cluster of 312
Perturbation theory, adiabatic canonical 266
Perturbation theory, canonical 105
Perturbation theory, near-adiabatic 266 267
Perturbation theory, superconveigent 106
Phase curve (see Invariant curve)
Phase errors, numerical, accumulated 341 343
Phase loss 18 19
Phase space, classical structure in 34 — 36 (see also Chaotic trajectory Global KAM Lagrangian Manifolds Periodic Quasiperiodic Separatrix)
Phase space, classically accessible area of 339
Phase space, complexified 162 163
Phase space, extended (generalized) 7 165 226 230-231 245
Phase space, n-dimensional (n — D) 4
Phase space, numerical grids in 339
Phase space, quantum distributions in (see Phase — space probability distribution quantum)
Phase space, resonance moving in 268
Phase space, SPO calculations in 341
Phase space, tunneling in 163 — 169
Phase-space area, in Poincare section 209 270
Phase-space flow 5
Phase-space monodromy matrix 191
Phase-space portrait 21 166 Poincare stroboscopic)
Phase-space portrait, Huisimi (see Huisimi distribution function)
Phase-space portrait, Wigner (see Wigner phase — space distribution function)
Phase-space representations, quantum 23 — 24 31-34 184 189 341
Phase-space Schrodinger equation 31
Phase-space trajectory 5 — 6 21 74 Periodic Quasiperiodic
Phase-space velocity 5
Phase-space velocity function 4
Phonon 194 195
Photoabsorption spectrum 178 — 180 188 190
Photoionization, detection by 49
Photoluminescence spectra 55
Photon quasiprobability function (see Q — function pliase
Photon sidebands, microwave-induced 220 — 224
Photon state, coherent 64 — 65 65-70
Photon wavepacket 64 — 66
Photon-number eigenstate 10
Photon-number operator 9 — 10
PI (see Path integral method)
Planck’s constant, scaled, dimensionless 8 19 98 237 241
Poincare map 22 35 118
Poincare section 21 — 23 35
Poincare section, examples of 104 (Fig. 5.1) 112 114 117 128 2 164 175 198 203 205
Poincare section, quantum 30 — 31
Poincare section, stroboscopic 231
Poincare — Birkhoff theorem 105
Point contact leads 211 213 214 221 223
Point of unstable equilibrium (see Fixed point unstable)
Poisson bracket 5
Poisson level-separation distribution 206 288
Poisson matrix 5
Polarization vector 61
Population inversion 290 — 291 296
Population inversion, area theorem for population inversion 291
Population inversion, inversion time, resonant 228
Population inversion, time evolution of 60 66 298 9 302
Population transfer, A system 301 (Fig 9 303
Population transfer, ladder system 301 (Fig 9.20a) 302
Population transfer, three-state 301 — 306
Population transfer, V system 301 (Fig. 9.20c)
Potential barrier system 145 — 151 163 Double particle Tunnel Tunneling)
Potential barrier, classical action integral under (see Tunneling action)
Potential barrier, rectangular 146 (Fig. 6.1a) 147 342
Potential barrier, wavepacket incident on 150 151 6.2)
Potential coupling, diabatic 279 (Fig. 9.7b) 280 282 283 284
Potential modulation 220 (Fig. 8.1b)
Potential well, particle in, shooting method for 347
Potential, double — well (see Double-well potential particle)
Potential-energy function, diabatic 279 (Fig. 9.7b) 280
Potential-energy matrix, adiabatic 278 279 280 9.8a)
PR method (see Peaceman — Rachford method)
Predictor formula 317
Predictor formula, Adams — Bashforth four-step 317
Predictor — corrector methods for iterating ordinary, differential equations 317 — 318 325
Probability distribution, particle mass, classical 33 (Fig. 1.12) 238
Probability distribution, particle mass, classical-quantum comparisons 99 (Fig. 4.4) 3 124
Probability distribution, particle mass, diffusive 259 — 263
Probability distribution, particle mass, obtained from quantum irregular Floquet states 240 — 241
Probability distribution, particle mass, quantum 2 184 246 309 quantum)
Probability flow velocity in coordinate space 13
Probability, survival 259
Propagation method, semiclassical reference, trajectory 50 — 53 (see also Reference trajectories)
Propagator, nFloquet 224 226 229 344
Propagator, nglobal 342
Propagator, npath integral expression for 159 — 160
Propagator, nphase-space 31
Propagator, npolynomial 344 — 345
Propagator, nsemiclassical 182 — 183 189
Propagator, nsemiclassical, matrix elements of 190 — 192
Propagator, nsemiclassical, phase — space coherent-state representation 189
Propagator, nsplit-operator (SPO) 340 — 341
Propagator, ntheoretical 157 — 160
Propagator, numerical, altemating-direction 336
Propagator, numerical, Crank — Nicholson (CN) 334
Pseudocrossing time 270 273
Pseudospectral time-propagation method 337. 341
Q-function, phase-space 65 — 66 69
Quadrature formulas 352
Quantization, Bohr — Sommerfeld 16 — 17 133 232
Quantization, EBK (see EBK quantization)
Quantization, first 9 87
Quantization, second 9 — 10
Quantization, WKB (see Bohr — Sommerfeld)
Quantum adiabatic criterion 296
Quantum adiabatic population inversion (see Population inversion)
Quantum adiabatic theorems 296
Quantum chaos 122 — 123
Quantum dot 54 210 221-224
Quantum dot, open 211 — 213
Quantum dot, stadium billiards 215 — 216
Quantum effect, intrinsically- 39. 102
Quantum energy eigenstate(s) (see Energy eigenstate(s) quantum)
Quantum localization (see Localization quantum)
Quantum nonlinear resonance (see Nonlinear resonance quantum)
Quantum observables, canonical 87
Quantum operators 2
Quantum pendulum (see Pendulum quantum)
Quantum phase — space probability distribution (see Phase — space probability distribution quantum)
Quantum Poincare section (see Poincare section quantum)
Quantum separatrix crossing (see Separatrix crossing quantum)
quantum states (see Energy eigenstate(s) quantum)
Quantum transient diffusion 259 — 260 260
Quantum tunneling (see Tunneling)
Quantum well 54 — 57 55 196
Quantum well in tilted magnetic field 197 — 200
Quantum well, biased 193 194 195 196
Quantum well, driven charged particle dynamics in 232 — 234 241
Quantum well, shooting methods for basis sets 348
Quantum well, structure, multiple 56 (Fig. 2.9) (see also Heterostructures lateral semiconductor)
quantum wire 54 217
Quantum-classical comparisons 40
Quantum-classical comparisons, 2-d 131 — 134 187
Quantum-classical comparisons, examples of 46 47 99 123 124 263
|
|
|
Ðåêëàìà |
|
|
|