Àâòîðèçàöèÿ 
		         
		        
					
 
		          
		        
			          
		        
			        Ïîèñê ïî óêàçàòåëÿì 
		         
		        
			        
					 
		          
		        
			          
			
			         
       		 
			          
                
                    
                        
                     
                  
		
			          
		        
			          
		
            
	     
	    
	    
            
		
                    Ash R.B. — Real Variables with Basic Metric Space Topology 
                  
                
                    
                        
                            
                                
                                    Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå    Íàøëè îïå÷àòêó? 
 
                                
                                    Íàçâàíèå:   Real Variables with Basic Metric Space TopologyÀâòîð:   Ash R.B.  Àííîòàöèÿ:  This is a text for a first course in real variables. The subject matter is fundamental for more advanced mathematical work, specifically in the areas of complex variables, measure theory, differential equations, functional analysis, and probability. In addition, many students of engineering, physics, and economics find that they need to know real analysis in order to cope with the professional literature in their fields. Standard mathematical writing, with its emphasis on formalism and abstraction, tends to create barriers to learning and focus on minor technical details at the expense of intuition. On the other hand, a certain amount of abstraction is unavoidable if one is to give a sound and coherent presentation. This book attempts to strike a balance that will reach the widest audience possible without sacrificing precision.
ßçûê:  Ðóáðèêà:  Ìàòåìàòèêà /Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ:  Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö ed2k:   ed2k stats Ãîä èçäàíèÿ:  2007Êîëè÷åñòâî ñòðàíèö:  213Äîáàâëåíà â êàòàëîã:  28.03.2010Îïåðàöèè:  Ïîëîæèòü íà ïîëêó  |
	 
	Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà  | Ñêîïèðîâàòü ID 
                                 
                             
                        
                     
                 
                                                                
			          
                
                    Ïðåäìåòíûé óêàçàòåëü 
                  
                
                    
                        "And" connective       15 "Implies" connective       15—16 "Not" connective       15 "Or" connective       15 148 148 Abel's theorem 55 Algebra of functions 137 Applications: of compactness 33—37 Applications: of the Mean Value Theorem 86—91 Applications: of the Weierstrass M-test 125—129 Arzela — Ascoli theorem 132—133 Bake Category Theorem 144—149 Bake Category Theorem, proof of 145—146 Ball 11 Bolzano — Weierstrass theorem 34—35 Bolzano — Weierstrass Theorem, corollary 35—36 Boundary point 23 42 Bounded function 65 125 Bounded sequence 34 Bounded sets 29—35 161—162 Bounded variation, functions of 106—111 Calculus, Fundamental Theorem of 104—105 Cantor diagonal process 8 Cantor set 76—80 Cantor's Nested, Set Property 29 164—165 Category 1 and category 2       145 Cauchy product of power series 139 Cauchy sequence 24 40—41 124 164 Cauchy — Schwarz inequality 52 Cauchy — Schwarz inequality, for integrals 115 Cauchy — Schwarz inequality, for sums 52 Chain rule 81—82 Change of variable formula 112 Closed ball 12 Closed sets 12—13 Closed sets, continuity and 61—62 Closed sets, relation between open sets and 13—14 Closed sets, unions and intersection of 25—28 Closure 22 Cluster point 21 Co-finite set 23 Codomain 57 Compact set 30 Compactness 28—37 161—164 Compactness, and closed, bounded sets 30 Compactness, and continuity 64—70 Compactness, applications of 33—37 Compactness, Bolzano — Weierstrass Theorem 34—35 Compactness, criteria for 162 Compactness, definition 30 Compactness, Heine — Borel Theorem 31—32 35 130 164 Compactness, nested set property 29 Complement 2 3 6 Complete metric space 41 Completeness, and least upper bounds 37—42 Composition of functions 59 Connectedness 150—152 Continuity 57—80 Continuity, and compactness 64—70 Continuity, definition 57 Continuity, discontinuities, types of 70—76 Continuity, epsilon-delta approach 57—58 Continuity, global vs. local concept of 59 67 Continuity, semicontinuous functions 152—158 Continuity, uniform 66—70 Continuous functions 57ff Contradiction, proof by 16—17 Contrapositive 17 Convergence see also “Pointwise convergence; Uniform convergence” 10—15 Convergence pointwise 117—120 Convergence, of power series 52—55 Convergence, radius of 54 Convergent subsequence 33—34 Countable sets 7—10 Countably infinite sets 7—10 De Morgan laws 5 6 27 Decreasing function 74 85 Decreasing sequence 41 Deleted open ball 21 Dense set 68—69 145—146 Derivative 81ff Diagonal process 8 46 131 163 Differentiable function 81ff Differentiation 81—92 Differentiation, definition 81—83 Differentiation, Generalized Mean Value Theorem 85—86 Differentiation, Mean Value Theorem 83—85 Differentiation, Mean Value Theorem, applications of 86—91 Dini's theorem 124—125 Direct image 62—63 Disconnected sets 150—151 Discontinuities, infinite 71 Discontinuities, jump 71 Discontinuities, nonsimple 73 Discontinuities, of the first kind 71—72 Discontinuities, of the second kind 73—74 Discontinuities, point 71 Discontinuities, removable 71 Discontinuities, simple 71 Discontinuities, types of 70—76 Disjoint sets 5—6 151 Distance 10—15 Distance function 10 Distance, from a point to a set 79 Distributive law for sets 2 Domain 57 Empty set 5 Epsilon-delta characterization 57—58 71 73 76 Equicontinuity, and Arzela — Ascoli Theorem 130—133 Equicontinuous family of functions 131 Euclidean metric 10 52 Euclidean p-space 11 Euclidean plane 2 Eventually (ev) 49 Everywhere continuous, nowhere differentiable function 126—129 Existential quantifier 18 Extended real numbers 35 Extension: of a bounced continuous function 143 Extension: of a uniformly continuous function 69 Extension: Tietze Extension Theorem 143 Finite sets 7 Function 33 Function, bounded 65 125 Function, continuous 57ff Function, decreasing 74 85 Function, differentiable 81ff Function, everywhere continuous and nowhere differentiable 126—129 Function, increasing 74 85 Function, left-continuous 111 Function, lower semicontinuous 152 Function, monotone 74 Function, of bounded variation 106—111 Function, right-continuous 110 Function, semicontinuous 152—158 Function, uniformly continuous 66—70 Function, upper semicontinuous 152 Function, variation of a 106 Fundamental theorem of calculus 104—105 Fundamental Theorem of Calculus, intuitive view of 105 Generalized Mean Value Theorem 85—86 Global concept of continuity 59 67 Greatest lower bound 38 Heine — Borel theorem 31—32 35 130 164 Homeomorphism 144 158 Horizontal line test for uniform convergence 119—120 Image 62—63 Improper integrals 114 Increasing function 74 85 Increasing sequence 41 Induction 19 Inductive procedure 19 Infimum (inf) 38 Infinite discontinuity 71 Infinite sets 7—9 Infinitely often (i.o.) 49 Infs, properties of 39—40 integral see “Riemann — Stieltjes integral” Integral test 115 Integration by parts 111—112 Interchange of operations 117—119 122—124 Interior of a set 145 Intermediate Value Theorem 75—76 Intermediate value theorem, for derivatives 87—88 Intersection 2 3 6 Invalid interchange of operations, examples of 117—119 Inverse image 59 Irrational numbers 147 Isolated point 21 Jump discontinuity 71 Jump function 102—103 l'Hospital's rule 81 88—90 Largest subsequential limit 46 Least upper bounds 38 Least upper bounds, and completeness 37—42 Left-continuous function 111 lim inf 46 lim sup 46 Limit concept, generalization of 45—48 Limit operations, and uniform convergence 122—125 Limit point 21 Limit, definition of 11 Limit, lower 46 Limit, upper 46 Line integrals, and Riemann — Stieltjes integral 104 Local concept of continuity 59 67 Local maximum 83 Local minimum 83 Logic 15—21 Logic, mathematical induction 18—19 Logic, negations 19—21 Logic, proof, types of 16—17 Logic, quantifiers 17—18 Logic, truth tables 15—16 Lower bound 38 Lower limit 46 Lower limit, properties of 49 Lower semicontinuous (LSC) function 152—158 Lower sum 94 Mapping 57 Mathematical induction 18—19 Maximum 65 83 Mean value theorem 81 83—85 Mean Value Theorem, applications of 86—91 Mean Value Theorem, for integrals 112—113 Mean value theorem, generalized 85—86 Metric 10 Metric space 10—13 Metric space, compactness criteria in 162—164 Minimum 65 83 Monotone function 74 Monotone sequence 41 124—125 Mutually exclusive sets 5 Negations 19—21 Neighborhood 155 Nested, Set Property 29 164—165 Nonsimple discontinuity 73 Nowhere dense sets 78 144—145 148 Open ball 11 Open sets 12 Open sets, continuity and 61—62 Open sets, relation between closed sets and 13—14 Open sets, unions and intersections of 25—28 Open subsets of R 42 Order of summation, reversal of 137—139 Partition 93 Partition, refinement of 95 Partition, size of 93 Path-connectedness 150—151 Perfect set 78 Piecewise continuous function 99 Point discontinuity 71 Pointwise bounded sequence of functions 132 Pointwise convergence 117—120 Pointwise convergence, vertical line test for 119—120 Power series, convergence of 52—55 Predicate 17—18 Preimage 59—61 Probability, and Riemann — Stieltjes integral 104 Proof: by cases 22 Proof: by contradiction 17 Proof: types of 17 Proof: via contrapositive 17 Proper subset 4 Proposition 15 Quantifiers 17—18 19 Radius of convergence 54 Ratio Test 53 Rational numbers 7 147 Real numbers 1 165 Real numbers, extended 35 Real numbers, upper/lower limits of sequences of 45—56 refinement 95 Relative topology 142 Removable discontinuity 71 Riemann integral 93ff Riemann — Stieltjes integral 93—116 Riemann — Stieltjes integral, change of variable formula 112 Riemann — Stieltjes integral, definitions 93—96 Riemann — Stieltjes integral, evaluation formula for 103 Riemann — Stieltjes integral, existence of 96 Riemann — Stieltjes integral, improper 114 Riemann — Stieltjes integral, integration by parts 111—112 Riemann — Stieltjes integral, line integrals and 104 Riemann — Stieltjes integral, Mean Value Theorem for 112—113 Riemann — Stieltjes integral, probability and 104 Riemann — Stieltjes integral, properties of 98—106 Riemann — Stieltjes integral, upper bounds on 113 Riemann — Stieltjes sum 94 Right-continuous function 110 Rolle's theorem 83—86 Root test 53—55 Semicontinuous functions 152—158 Separated sets 151 SEQUENCE 33—34 45—52 Sequence, and limit concept 45 Sequence, bounded 34 Sequence, Cauchy 24 40—41 124 164 Sequence, convergence of 10—15 Sequence, monotone 41 124—125 Sequence, unbounded 36 Sequences of real numbers, upper and lower limits of 45—56 Set-theoretic difference 6 Sets 1ff Sets,        148 Sets,        148 Sets, and category 2 145 Sets, bounded 29—35 161—162 Sets, Cantor 76—80 Sets, closed 12—14 25—28 Sets, closure of 21—22 Sets, co-finite 23 Sets, compact 30 Sets, complement of 2 3 6 Sets, connected 150—152 Sets, countable 7—10 Sets, dense 68 69 145—146 Sets, disjoint 5—6 151 Sets, distributive law for 2 Sets, empty 5 
                            
                     
                  
			Ðåêëàìà