Авторизация
Поиск по указателям
M.A.Akivis, V.V.Goldberg — Projective Differential Geometry of Submanifolds
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Projective Differential Geometry of Submanifolds
Авторы: M.A.Akivis, V.V.Goldberg
Аннотация: In this book, the general theory of submanifolds in a multidimensional projective space is constructed. The topics dealt with include osculating spaces and fundamental forms of different orders, asymptotic and conjugate lines, submanifolds on the Grassmannians, different aspects of the normalization problems for submanifolds (with special emphasis given to a connection in the normal bundle) and the problem of algebraizability for different kinds of submanifolds, the geometry of hypersurfaces and hyperbands, etc. A series of special types of submanifolds with special projective structures are studied: submanifolds carrying a net of conjugate lines (in particular, conjugate systems), tangentially degenerate submanifolds, submanifolds with asymptotic and conjugate distributions etc. The method of moving frames and the apparatus of exterior differential forms are systematically used in the book and the results presented can be applied to the problems dealing with the linear subspaces or their generalizations.
Graduate students majoring in differential geometry will find this monograph of great interest, as will researchers in differential and algebraic geometry, complex analysis and theory of several complex variables.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1993
Количество страниц: 362
Добавлена в каталог: 11.12.2009
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Theorem, Frobenius 11 15 24 77 115 144 187
Theorem, Graf — Sauer 276 295
Theorem, Reiss 270 271 278 295
Theorem, Reiss, 1st generalized 272
Theorem, Reiss, 2nd generalized 277
Theorem, Segre 56 59 122 127 259
Theorem, Segre's type 71 111
Theorem, Segre, generalized 81—82 85 111 128 202
Theorem, Togliatti 72
Theorem, Vieta 204 276
Theory of curves 269
Threefold, asymptotic direction 69
Threefold, pair of conjugate directions 66
Togliatti 327
Togliatti, theorem 72
Torse 52 55 56 60 95 100 116 118 135 137
Torse, edge of regression of 100 118
Torsion, geodesic 205
Torsion, tensor of affine connection 17 179
Torsion-free, affine connection 17
Torsion-free, projective connection 205
Torsion-free, projective connection, curvature tensor of 205
Total differential 21 105 176 186
Trace of tensor 225
Trace-free part of quasitensor 183
Transformation by focal family of rays 94 112
Transformation by focal family of rays of submanifold of codimension 3 101
Transformation of affine space 21
Transformation of basis 63
Transformation, admissible 16 35 39 74 174 179 183 185 200 212
Transformation, centroprojective 74
Transformation, correlative 116 117 123 255 275 276
Transformation, Egorov vi
Transformation, elliptic 23
Transformation, geodesic 180
Transformation, identity 1 18
Transformation, infinitesimal of frame 1
Transformation, invertible 5
Transformation, isotropy 22
Transformation, linear 18
Transformation, projective 18 240 243 244 254
Transformation, symmetric double 62
Trilinear form 50
Trushin 71 111 327
Typical fiber of bundle of 1st order frames 35
Typical fiber of connection 178
Tzitzeika v 327
Udalov 206 328
Unity point 18
Value of exterior p-form 9
van der Waerden — Bortolotti operator 184
Vangeldere v 72 112 328
Vanhecke 221 307
Vaona v 71 329
Variety, algebraic v 26 117 129 261
Variety, algebraic, projective 278
Variety, bisecant 29 31 285 286
Variety, bisecant, degenerate 285 286
Variety, Cartan 83 84 111 207
Variety, Cartan, invariant normalization of 207
Variety, focus 117 120 121 123 126 129 132 134 166 168 175 177 183 194 261
Variety, focus of 1st normal of 175 188 189
Variety, focus of generator 166
Variety, focus, degenerate 118
Variety, focus, equation of 122
Variety, focus, imaginary 137
Variety, focus, real part of 134
Variety, Monge 279 280 296
Variety, Monge, degenerate 279—281
Variety, Monge, nondegenerate 280
Variety, Segre 29 34 37 41 51 52 71—72 150 158
Variety, Segre, 2nd fundamental form of 41 158
Variety, Segre, dimension of 37
Variety, Segre, moving frame of 37
Variety, Segre, plane generator of 29 51
Variety, Segre, projection of 150
Variety, Segre, tangent subspace to 37
Vasilyan 256 259 268 328
Vasilyev v 328
Vector(s), collinear 17 18 290
Vector(s), conjugate 215 216
Vector(s), differential equations of 3
Vector(s), fields vii
Vector(s), fields in involution 9
Vector(s), harmonic conjugate 267
Vector(s), law transformation of 3
Vector(s), relative 4
Vector(s), space 1 8 17 131 214 227
Vector(s), space infinitesimal displacement of frame of 2
Vector(s), space, basis of 1 35
Vector(s), tangent 5
Vector(s), tangent, coordinates of 14 48
Vectorial frame 18
Verbitsky 267 328
Veronese, embedding 296
Veronese, mapping 62—72
Veronese, mapping of 2-submanifold 64—66
Veronese, surface 30 31
Veronese, surface, moving frame of 291
Veronese, variety 30 31 34 37 41 62—72 87 131 132
Veronese, variety, 2-dimensional 67 285 290 291 295
Veronese, variety, 2nd fundamental form of 41 287
Veronese, variety, 2nd osculating subspace of 42
Veronese, variety, dimension of 38
Veronese, variety, tangent subspace to 38
Vertex of cone 116 119 120 126—128 135 168 170
Vertex of conic submanifold 168
Vertex of hypercone 122 131
Vieta theorem 204 276
Villa v 71 111 328 329
Vilms vii 330
Volume element 186
Vorontsova 207 300 330
Voss normal 111
Vygodsky 330
Wagner 268 330
Waksman 171 330
Walter 171 172 301 330
Web, multidimensional 276 296
Weise 199 206 331
Weise's scheme 206 207
Wilczynski v 330
Wilczynski directrix 250
Wilczynski — Bompiani quadric 249
Wood 275 276 295 330
Yanenko 141 330
Yang 330 331
Yano 296 320
Zaits 207 316
Zero direction 214
Zero matrix 116
Реклама