Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Bingham N.H., Goldie C.M., Teugels J.L. — Regular variation
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Regular variation
Àâòîðû: Bingham N.H., Goldie C.M., Teugels J.L.
Àííîòàöèÿ: Both the theory and applications of regular variation are given comprehensive coverage in this volume. In many limit theorems, regular variation is intrinsic to the result and exactly characterizes the limit behavior. The book emphasizes such characterizations, and gives a comprehensive treatment of those applications where regular variation plays an essential (rather than merely convenient) role. The authors rigorously develop the basic ideas of Karamata theory and de Haan theory including many new results and "second-order" theorems. They go on to discuss the role of regular variation in Abelian, Tauberian, and Mercerian theorems. These results are then applied in analytic number theory, complex analysis, and probability, with the aim of setting the theory in context. A widely scattered literature is thus brought together in a unified approach. With several appendices and a comprehensive list of references, analysts, number theorists, probabilitists, research workers, and graduate students will find this an invaluable and complete account of regular variation.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1987
Êîëè÷åñòâî ñòðàíèö: 494
Äîáàâëåíà â êàòàëîã: 06.12.2009
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Maximal term 298—299 324—325
Maximal type see “Type (of entire function”
Maximum function see “Cumulative maximum”
Maximum modulus 298—299
Maximum modulus and genus zero 304
Maximum modulus and holomorphic regular variation 313
Maximum modulus and minimum modulus 321—324
Maximum modulus and Nevanlinna characteristic 304—305
Maximum modulus and proximate order 311
Maximum modulus and zero-distribution 324—325
Maximum modulus, examples 321
Meagre 2
Mean lifetime 359 370
Mean lifetime, finite 360 365 367 370
Mean lifetime, infinite 360—367
Mean type see “Type (of entire function”
Measurability xix 437 “Non-measurable
Measurability in law 356
Measurability, avoidance 11 18—19 134—136 140—145 152—153
Measure xix (see also “Lebesgue measure” “Lebesgue “Linear “Signed “Variation
Measure theory, difficulties 10
Measure theory, qualitative and quantitative aspects 7
Mejzler, D.G. 414
Mellin convolution 194
Mellin convolution and de Haan classes 242—247 260—263
Mellin convolution and entire functions 302—304 306—309 323
Mellin convolution in number theory 285 289—290
Mellin convolution, Abelian theorem 201—202 242
Mellin convolution, converse Abelian theorem 213—214
Mellin convolution, improper 202—203 243
Mellin convolution, Mercerian theorem 260—278
Mellin convolution, Tauberian theorem 221—222 277 230—231 243—247
Mellin transform 194
Mellin transform, improper 202
Mellin — Stieltjes convolution 194 443—444
Mellin — Stieltjes convolution in probability theory 327 393
Mellin — Stieltjes convolution, Abelian theorems 209—212 242—243
Mellin — Stieltjes convolution, reduction to Mellin convolution 209—210 237
Mellin — Stieltjes convolution, Tauberian theorem 231 234—237
Mellin — Stieltjes transform 205 327 393
Mercerian theorem 259—283
Mercerian theorem and Lambert transform 263
Mercerian theorem for Cesaro means 263
Mercerian theorem for de Haan classes 160—163 260—263 278—283
Mercerian theorem for differences see “For de Haan classes”
Mercerian theorem for dominated variation 118—119
Mercerian theorem for Holder means 263
Mercerian theorem for indefinite integral 30—31 33—35 58—59 96—97 103—104 160—165
Mercerian theorem for integral of logarithm 31—32 165
Mercerian theorem for Kohlbecker transform 281—283
Mercerian theorem for LS transform 118—119 263 274 278—281
Mercerian theorem for Mellin convolution 260—278
Mercerian theorem for O,o-versions of de Haan class 164—165
Mercerian theorem for O-regular variation 96—97
Mercerian theorem for rapid variation 103—104
Mercerian theorem for slow variation with remainder 281—282
Mercerian theorem in entire-function theory 304—305
Mercer’s theorem 262
Meromorphic function 306
Mertens formulae 294 296
Method of moments 329
Method of moments in Darling — Kac theory 391—392 394—395
Method of moments in renewal theory 364
Method of monotone minorants 219—221
Minimal type see “Type (of entire function”
Minimum modulus 321—324
Mittag — Leffler function 315 321 325 329
Mittag — Leffler law 329
Mittag — Leffler law and occupation times 391—397
Mittag — Leffler law and stable subordinator 349
Mittag — Leffler law, determined by its moments 391
Mittag — Leffler law, tail behaviour 337
Mixing 421
Mobius function 295
Mobius inversion formula 286
Mode, C.J. 407
Modified Schroder functional equation 398
Moment-generating function 337
Monotone density argument 334 364 371 387 396
Monotone equivalents in de Haan theory 159
Monotone equivalents in Karamata theory see “Cumulative maximum function”
Monotone minorants 219—221
Monotone O-regularly varying function 65
Monotone rapidly varying function 103
Monotone regularly varying function 54—57 60
Monotone regularly varying sequence 56
Monotone slowly varying function 16—17
Monotonicity see “Almost decreasing” “Almost “Cumulative “Near-monotonicity” “Quasi-monotonicity” “Zygmund
Monotonicity and Matuszewska index of inverse function 124
Monotonicity, as Tauberian condition 37—41 58—60 116—119 124—126 159—160 172—174 180 234—237 255—257
Monotonicity, characterising Karamata indices 68 73
Monotonicity, characterising local indices 167—170
Monotonicity, characterising slow variation 23—24 58
Multiplicative function 6 17 21
Multiplicative function in number theory 290—296 423—424
Multiplicative notation 6
Multitype branching process 407—408
Multivariate extremes 415
Multivariate regular variation 426
Narrow convergence 439—443
Narrow convergence and radiality 195—196 204—205 223—226
Narrow convergence in probability theory 328—329 443
Narrow convergence of renewal measure 363
Narrow topology 439
Near-monotonicity 104—106 108—111 210
Necessary see “Condition necessary for an implication”
Nevanlinna characteristic 304—305
Non-decreasing asymptotic balance see “Asymptotic balance”
Non-lattice law 345 350
Non-lattice law in Darling — Kac theory 395—396
Non-lattice law in local limit theory 351—353
Non-lattice law in renewal theory 360 365—367
Non-measurable function 10—11 61 81 122 146
Non-measurable set 4
Non-restrictive condition see “Condition necessary for an implication”
Norm see “Amalgam” “Supremum “Variation
Normal law and almost-sure limit theorems 420
Normal law and extremes 412
Normal law and infinite divisibility 339
Normal law and records 416—418
Normal law and stability 344 346—349
Normal law and tail behaviour 342 348
Normalised regular variation 44 58
Normalised regular variation and regularly varying sequences 53
Normalised regular variation, extension 123
Normalised slow variation 15
Normalised slow variation and near-monotonicity 109
Normalised slow variation and quasi-monotonicity 109
Normalised slow variation and Zygmund class 24—25
Normalised slow variation, extension 123
Normalised slow variation, locally bounded variation 104
Norming constants 327
Norming constants for extremes 408—411 413
Norming constants for sums 344—353
Norming constants in relative stability 372—374
Norming constants in self-similarity 357—358
Norming constants, regular variation 345 349 357—358
Norming function and occupation time 392—393
Norming function and stochastic monotonicity 393
Norming function in renewal theory 360
Norming function in self-similarity 356—359
Norming function, regular variation 358 392—393
Notation see “Conventions”
Notation, additive 6 17 61 92;
Notation, multiplicative 6
Null sequence 214—215
Number theory see “Analytic number theory”
Nyman, B. 231
O,o-versions of de Haan class 128—129 148—149
O,o-versions of de Haan class and global indices 149
O,o-versions of de Haan class and indefinite integral 164—165
O,o-versions of de Haan class and indices transform 151
O,o-versions of de Haan class and LS transform 174
O,o-versions of de Haan class and slow variation with remainder 185
O,o-versions of de Haan class , Abelian theorem 164—165 174
O,o-versions of de Haan class , Baire version 148
O,o-versions of de Haan class , global bounds 171—172
O,o-versions of de Haan class , Mercerian theorem 164—165
O,o-versions of de Haan class , representation 152—153
O,o-versions of de Haan class , Tauberian theorem 174
O,o-versions of de Haan class , uniform convergence 133
O-analogue see “O-version”
O-regular variation (OR) 65—66 (see also “Bounded decrease” “Bounded “Dominated
O-regular variation (OR) and differential equation 427
O-regular variation (OR) and indefinite integral 94—97 119—120 124—125
O-regular variation (OR) and integral of logarithm 165
O-regular variation (OR) and LS transform 118—119
O-regular variation (OR) and Matuszewska indices 123
O-regular variation (OR) and rapid variation 83
O-regular variation (OR) and theorems of exponential type 258
O-regular variation (OR) in branching processes 406
O-regular variation (OR) in Drasin — Shea theory 271 276
O-regular variation (OR) in renewal theory 365
O-regular variation (OR) of auxiliary function in de Haan class 164—165 181—183
O-regular variation (OR), Abelian theorem 96—97 124 165
O-regular variation (OR), as Karamata case 128
O-regular variation (OR), higher-dimensional analogue 426
O-regular variation (OR), Mercerian theorem 96—97 165
O-regular variation (OR), representation 74—76
O-regular variation (OR), Tauberian theorem 119—120 124
O-regular variation (OR), uniform convergence 65—66
O-verson see “O of “O-regular
O-verson of Aljancic — Karamata theorem 165
O-verson of Monotone Density Theorem 119—120 126
O-verson of Vuilleumier — Baumann theory 230
Occupation time 368 389—397
Omey, E. xix
One-sided peaks 88—93 95—96
One-sided representation 68 167—171
One-sided stable law see “Positive stable law”
Order see “Upper order”
Order (of canonical product) 300
Order (of entire function) 298—300 (see also “Proximate order”)
Order (of holomorphic function in a sector) 313
Order statistics 408 413 415
Ordinary differential equation 427
Ordinary Laplace transform see “Laplace transform”
Oriented zeros 304
Orlicz space 66
P-function 372
p.g.f see “Probability generating function”
Pakes, A.G. 388
Parseval identity 240
Partial attraction 349 420
Partial limit 181 183 204—204—5 270—271
Partial records 418
Partitions 284—287
Pathology 2 10—11
Peaks see “One-sided peaks” “Polya
Penultimate approximation 413
Period (of renewal sequence) 369
permanence 197 206 215—216
Perron — Frobenius theory 407
Peter-and-Paul law 372—373
Pfluger, A. 319
Philipp, W. 421
Phragmen — Lindeloef indicator see “Indicator”
Phragmen — Lindeloef principle 314
Pitt, H.R. 227
PNT see “Prime Number Theorem”
Point process 341 414
Poisson process 341 387—388 416
Pole 264 274
Polya maximal means 74 154
Polya peaks 88—94
Polya peaks in Drasin — Shea theorem 268—270 273
Polya peaks in entire-function theory 322
Polya peaks in Jordan’s theorem 277
Polya’s extension of Dini’s theorem 55 60 175 411
Positive (definition) xix
Positive decrease (PD) 71
Positive decrease (PD) and integrals 96—97 100
Positive decrease (PD) of auxiliary function in de Haan theory 130 134—135 152—153 183—184 185—186
Positive increase (PI) 71
Positive increase (PI) and integrals 94—96 98—99
Positive increase (PI) of auxiliary function in de Haan theory 136 152—153 183—184
Positive increase (PI) of inverse 124
Positive increase (PI), Tauberian theorem for 119—120
Positive stable law 349 361
Positive stable law and branching process 403
Positive stable law in fluctuation theory 380—382
Potter bounds 25 72—73 429
Power series 40
Preradial see “Radial matrix”
Prerequisites xviii
Prime numbers 290—297 (see also “Prime Number Theorem”)
Principle of uniform boundedness 214—215 440
Pringsheim, O. 264 266
probability density see “Density”
Probability generating function 327
Probability integral transformation 416
Probability measure see “Law”
Probability theory 326—422
Prohorov, Yu.V. 439
Proximate order 299—313
Proximate order and completely regular growth 316—321
Proximate order and indicator 313 315
Pure quasi-monotone 105
Quantifier in asymptotic balance 183
Quantifier in de Haan theory in limit theorems 139—143 163
Quantifier in de Haan theory in uniformity theorems 129—134 137
Quantifier in Karamata theory see “Monotone regularly varying function” “Regularly “Sequence
Quantifier in Karamata theory in Characterisation Theorem 17 19
Quantifier in Karamata theory in uniformity theorems 61—65
Quasi-monotonicity 104—111
Quasi-monotonicity in Abelian theorem 200—203 207—209 240 337
Quasi-monotonicity in converse Abelian theorem 216—217
Quasi-monotonicity in probability theory 337
Quasi-radial see “Radial matrix”
QUEUE 385—388 421 430
r.v. see “Random variable”
Radial matrix (including preradial, quasi-radial) 195—197
Radial matrix (including preradial, quasi-radial) and Vuillemier — Baumann theory 229—230
Radial matrix (including preradial, quasi-radial) as approximate convolution 222—227
Radial matrix (including preradial, quasi-radial), Abelian theorem 203—204 206 218—219 228—229
Radial matrix (including preradial, quasi-radial), asymptotic commutativity 224—225
Radial matrix (including preradial, quasi-radial), characterisation 196—197 204—206
Radial matrix (including preradial, quasi-radial), converse Abelian theorem 215—216
Radial matrix (including preradial, quasi-radial), non-negative 219—221 225—229
Radial matrix (including preradial, quasi-radial), Tauberian theorem 217—221 228—229
Radial sequence 18
Radon measure 437
random records 418
Random set 341 371—372
Random signs 310
Random stopping 421
Random variable 326 (see also “Law”)
Random vector 328
Random walk 343 (see also “Domain of attraction for sum” “Left-continuous
Random walk and Brownian motion 358
Random walk and fluctuation theory 375—385
Random walk and local limit theory 350—353
Random walk and maxima 419—420
Random walk and queues 385—386
Random walk and relative stability 372
Random walk and renewal process 368—369
Random walk and stable laws 343 349
Random walk, asymptotic behaviour 376
Random walk, nonlinear norming 350
Random walk, occupation times 395—397
Ðåêëàìà