Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Bingham N.H., Goldie C.M., Teugels J.L. — Regular variation
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Regular variation
Àâòîðû: Bingham N.H., Goldie C.M., Teugels J.L.
Àííîòàöèÿ: Both the theory and applications of regular variation are given comprehensive coverage in this volume. In many limit theorems, regular variation is intrinsic to the result and exactly characterizes the limit behavior. The book emphasizes such characterizations, and gives a comprehensive treatment of those applications where regular variation plays an essential (rather than merely convenient) role. The authors rigorously develop the basic ideas of Karamata theory and de Haan theory including many new results and "second-order" theorems. They go on to discuss the role of regular variation in Abelian, Tauberian, and Mercerian theorems. These results are then applied in analytic number theory, complex analysis, and probability, with the aim of setting the theory in context. A widely scattered literature is thus brought together in a unified approach. With several appendices and a comprehensive list of references, analysts, number theorists, probabilitists, research workers, and graduate students will find this an invaluable and complete account of regular variation.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1987
Êîëè÷åñòâî ñòðàíèö: 494
Äîáàâëåíà â êàòàëîã: 06.12.2009
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Counterexample for uniformity in de Haan theory 135
Counterexample for uniformity in Karamata theory 63—64
Counterexample for “Karamata’s Theorem” for one-sided indices 95 99 102—103 125
Counterexample in Mercerian theorem for LS transform 281
Counterexample in Uniform Convergence Theorem 10—11 141
Cramer’s condition 354
Critical branching process 397 399—403
Croftian theorem 49—50
Crump — Mode — Jagers process 407
Csiszar, I. 134
Cumulant-generating function 404
Cumulative maximum function and characterisation of slow variation 58
Cumulative maximum function and inverse 124
Cumulative maximum function and rapid variation 87
Cumulative maximum function as monotone equivalent of regularly varying function 23—24
Cumulative maximum process 375—382 386
Cumulative minimum process 375—376
Cumulative sum process see “Random walk” “Weak
Cuypers, J. xix
D-K see “Darling — Kac condition”
d.f. see “Distribution function”
Dam 389
Darling — Kac condition (D-K) 390—394
Darling — Kac theory see “Occupation times”
de Bruijn conjugate 29 78—79 189
de Bruijn conjugate and smooth variation 47
de Bruijn conjugate and tail behaviour of probability law 341—342
de Bruijn conjugate and Tauberian theorem of exponential type 252—253 257
de Bruijn conjugate and Young conjugate 47—49
de Bruijn conjugate, methods of calculation 78—79 433—435
de Haan classes 128 158—165 “Inversely “Smooth
de Haan classes and extremes 410—410(11
de Haan classes and indefinite integral 26 159—163
de Haan classes and Kohlbecker transform 257 281—283
de Haan classes and local indices 167—170
de Haan classes and LS transform 172—174 189 191 278—281
de Haan classes and Mellin convolution 242—247
de Haan classes and slow variation 164
de Haan classes and slow variation with remainder 185 192
de Haan classes and tail of probability law 374
de Haan classes in entire-function theory 306—308
de Haan classes , Abelian theorem 159—163 172—174 189 191 242 281—283
de Haan classes , characterisation of limit 128 139—143
de Haan classes , composition with regularly varying function 189
de Haan classes , conjugacy 189
de Haan classes , higher-dimensional analogues 426
de Haan classes , integral characterisation 189
de Haan classes , Mercerian theorem 160—163 260—263 278—283
de Haan classes , monotone density representation 159—160
de Haan classes , representation 158—160 162—164
de Haan classes , Tauberian theorem 159—160 162—163 172—174 189 191 243—247 281—283
de Haan classes , uniform convergence 139
de Haan function 26 (see also “de Haan class”)
de Haan function, additive argument version 129
de Haan function, uniformity theorems 129—139
de Haan theory xvii 127—192
de Haan, L.F.M. xvii xix 88 145
de la Vallee Poussin, Ch.J. 287
Defective law 368 375
Degenerate law see “Relative stability”
Degenerate law as arc-sine law 364;
Degenerate, notation 326
Delayed renewal process 360
Denominator in de Haan theory see “Auxiliary function in de Haan theory”
Dense set see “Quantifier”
density see “Cesaro density” “Linear “Logarithmic
Density ( = probability density) 326 350—353 “Scheffe’s
Density ( = probability density) and convergence of maxima 411—413
Density ( = probability density) for smoothing 14 45 166
Density ( = probability density) of stable law 350
Density ( = probability density), unimodal 350 352
Dependent random variables 414 420—421
Derivative see “Monotone Density Theorem”
Derivative as operator 47
Derivative of function in class 180
Derivative of smoothly varying function 44—45 47
Difference set 3 7 9 57
Differential equation 427
Differentiating an asymptotic relation 113 (see also “Monotone Density Theorem”)
Diffusion process 394
Dini derivates 58 123
Dini’s theorem 55 60
Dirac measure 262
Dirichlet series 40 292 423—424
Discrete law see “Lattice law”
Discrete regular variation 49—53
Discrete subexponentiality 343 431—432
Distribution function 326 (see also “Law”)
Domain of attraction for first-passage time 382
Domain of attraction for ladder epoch 380—384
Domain of attraction for ladder height 380 384—385
Domain of attraction for maximum 409—413 416—417
Domain of attraction for occupation time 396
Domain of attraction for records 416—418
Domain of attraction for renewal sequence 372
Domain of attraction for sum 344—348
Domain of attraction for sum and local limit theory 350—353
Domain of attraction for sum and maximum 419—420
Domain of attraction for sum and occupation time 396
Domain of attraction for sum and relative stability 350
Domain of attraction for sum and renewal process 369
Domain of attraction for sum and Spitzer’s condition 379—380 383—384
Domain of attraction for sum to positive stable law 349 361
Domain of normal attraction 348—349 382
Dominated variation 54 (see also “O-regular variation”)
Dominated variation and indefinite integral 98—103
Dominated variation and LS transform 118—119
Dominated variation and quasi-monotonicity 106—110
Dominated variation and ratio Tauberian theorems 116—118
Dominated variation and subexponentiality 429—431
Dominated variation, Abelian theorem 118—119
Dominated variation, counterexample 103
Dominated variation, Mercerian theorem 118—119
Dominated variation, Tauberian theorem 118—119 232
Double convolution 234
Drasin, D. xix
Dual space 243 439
Dwass, M. 370
Dynkin — Lamperti condition 364—367
Dynkin — Lamperti problem 365
Edgeworth expansion 353
Egorov’s theorem 10
Elementary Tauberian theorems 217—222 229
Embrechts, P.A.L. xix
Entire characteristic function 337
Entire function 298—325
Entire function of Valiron — Titchmarsh type 305 312
Entire function, completely regular growth 316—321
Entire function, examples 307—308; 315 321
Entire function, extremal properties 305 321 323—325
Entire function, indicator of 313—316
Entire function, minimum modulus 321—324
Entire function, negative zeros 301—308 324—325
Entire function, Nevanlinna characteristic 304—305
Entire function, oriented zeros 304
Entire function, proximate order 310—313
Entire function, real zeros 308—310
Entire function, regularly distributed zeros 320
Entire function, zero-distribution 301—313 316—321 324—325
Equitightness 439—443
Equitightness and radial matrix 196 204 223
Erdos, P. 134
Erickson, K.B. 371
Esseen, C.-G. 353
Estimation see “Statistical applications”
Euler product for Gamma function 246 279
Euler product for multiplicative function 292
Euler product for Riemann zeta-function 286—287 294
Euler summability 353
Euler’s summation formula 289
Eventually of one sign 161—162
examples see “Counterexample”
Examples de Bruijn conjugate 433—435
Examples, domain of attraction for extremes 412
Examples, entire functions 307—308 315 321
Examples, Peter-and-Paul law 372—374
Examples, quasi- and near-monotonicity 109—110
Examples, rapid variation 85—86 125
Examples, slowly varying functions 16
Examples, subexponentiality 430
Exceptional set 113—115 125
Exceptional set and branching processes 406
Exceptional set and completely regular growth 316—318 320
Exceptional set and convolution inequality 275 323—324
Exceptional set and entire function with negative zeros 304
Exceptional set in renewal theory 365—367 371
Excursion 395
Explosion 398 403—406
Explosive branching process see “Infinite-mean branching process”
Exponential type see “Type (of entire function”
Extended de Haan class 128 145—148
Extended de Haan class and local indices 146
Extended de Haan class , Baire version 146
Extended de Haan class , canonical representation 154—158
Extended de Haan class , representation 154
Extended de Haan class , uniform convergence 137—138
Extended regular variation (ER) 65—66 74—75
Extended regular variation (ER) and Karamata indices 67 123
Extended regular variation (ER) and O-regular variation 71
Extended regular variation (ER) and regular variation 71
Extended regular variation (ER) and theorems of exponential type 258
Extended regular variation (ER) of integral 94—97
Extended regular variation (ER), canonical representation 74 157
Extended regular variation (ER), characterisation 73
Extended regular variation (ER), representation 74
Extended regular variation (ER), uniform convergence 66
External rate 76
Extinction 397—398 403
Extinction probability 398 405
Extinction time 397—398 403—404
Extremal domain of attraction see “Domain of attraction for maxima”
Extremal law 408—414 416—418
Extremal process 414—415 420
Extremal properties (of entire functions) 305 321 323—325
Extremes 122 184 408—415
Faa di Bruno 60
Fatou’s Lemma 154 228
Feller, W. xvii 237
Fenchel’s Duality Theorem 48
Finite dam 389
Finite-dimensional convergence 356—357
Finite-dimensional laws 328 354—357
First-passage time 382 (see also “Ladder epoch”)
Fluctuation theory 368 375—385
Fourier cosine transform 240—241
Fourier integral 209 240—241
Fourier inversion formula 240—241
Fourier series see “Conditionally convergent series”
Fourier series, Abelian theorems 206—209
Fourier series, generalisations 207 237 242
Fourier series, integrability theorems 241—242
Fourier series, Tauberian theorems 232 237—240
Fourier sine-transform 207—209 240—241
Fourier — Stieltjes integral 209
Fourier — Stieltjes transform see “Characteristic function”
Fourth proof of the UCT 9 62—63 84 134 137—138
Fractional integral 58 336
Frullani integral 35—36
Function algebra see “Banach algebra” “Beurling
Functional equation 428 (see also “Cauchy functional equation” “Modified
Functional equation in de Haan theory 140
Functional equation in supercritical branching process 404
Functional limit theory (probability) 341 353 414 418—419
g-index 128 144—145
g-index and representation 158—160
Gamma class see “The class ”
Gamma distribution 412
Gamma function and Cesaro means 246
Gamma function and entire-function theory 307—308 320—321
Gamma function and Lambert summability 232—233
Gamma function and Mercerian theorem for LS transform 279
Gamma function and partitions 285—286
Gamma function, Euler product 246 279
Gaps in Karamata theory 127—128
Gauge function 110—113 208—210
Gaussian law see “Normal law”
Gaussian process 420 422
Gegenbauer series 237
Gelfand theory 261—262
Generalised arc-sine law see “Arc-sine law”
Generalised convolution 372
Generalised integers 295
Generalised inverse see “Inverse”
Generalised primes 290 295
Generalised renewal theory 368
Generating function for partitions 286 (see also “Probability”)
Generating function genus 300—301 306—310 312 324
Generating function of renewal sequence 369
Gestrahlt 195
Gestrahlte Folgen 18
Gestrahlungsfunktion 195
GI/G/1 386—388
Global bounds in de Haan theory 130—139 171—172 189—190
Global indices 148—149 153
Gnedenko, B.V. 411
Group see “Topological group”
Group in characterisation of limit in de Haan theory 140 142
Group in Steinhaus theory 4 20 57
Group of affine maps 354 423
Group of smoothly varying functions 46—47
Growth of entire function 300 310—313
Growth of regularly varying function 22
Growth of slowly varying function 16 79—81 124
Haar measure 194
Hadamard factorisation 300 304 319
Hadamard, J. 287
Hahn decomposition 437 439 441
Half-line 350 397
Hamel basis 5 10 57
Hamel pathology 5 21 64
Hank el transform 241
Hardy — Littlewood — Karamata theorem xvii
Harmonic renewal function 384—385
Harmonic renewal theory 368
Harris, T.E. 407 430
Hazard function 410—411 415—418
Hazard rate 411—412
Heiberg, C. 84
Heine — Borel theorem 7—8
Helly’s selection principle and asymptotic balance 181
Helly’s selection principle and Drasin — Shea theorem 270
Helly’s selection principle and equitightness 440 442
Helly’s selection principle and occupation times 392 394
Helly’s selection principle in Ratio Tauberian Theorem 116
Heuristics, Abel — Tauber theorems 194
Heuristics, indefinite integral of regularly varying function 27
Higher-dimensional regular variation 426
Hincin, A Ya. 339 387
History, Abel — Tauber theory 193
History, regular variation xvii 18 20 311
Holder means 247 263
Holomorphic function see “Entire function”
Holomorphic function and de Bruijn conjugate 433—434
Holomorphic function and functional equations 428
Holomorphic function in a sector 312—317 424—425
Holomorphic regular variation (HR) 312—313 424—425
Homomorphism 355
Hopf, E. 377
Hunt process 340
i.d. see “Infinite divisibility”
Ðåêëàìà