Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Bayin S.S. — Mathematical Methods in Science and Engineering
Bayin S.S. — Mathematical Methods in Science and Engineering



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Mathematical Methods in Science and Engineering

Автор: Bayin S.S.

Аннотация:

An innovative treatment of mathematical methods for a multidisciplinary audience

Clearly and elegantly presented, Mathematical Methods in Science and Engineering provides a coherent treatment of mathematical methods, bringing advanced mathematical tools to a multidisciplinary audience. The growing interest in interdisciplinary studies has brought scientists from many disciplines such as physics, mathematics, chemistry, biology, economics, and finance together, which has increased the demand for courses in upper-level mathematical techniques. This book succeeds in not only being tuned in to the existing practical needs of this multidisciplinary audience, but also plays a role in the development of new interdisciplinary science by introducing new techniques to students and researchers.

Mathematical Methods in Science and Engineering's modular structure affords instructors enough flexibility to use this book for several different advanced undergraduate and graduate level courses. Each chapter serves as a review of its subject and can be read independently, thus it also serves as a valuable reference and refresher for scientists and beginning researchers.

There are a growing number of research areas in applied sciences, such as earthquakes, rupture, financial markets, and crashes, that employ the techniques of fractional calculus and path integrals. The book's two unique chapters on these subjects, written in a style that makes these advanced techniques accessible to a multidisciplinary audience, are an indispensable tool for researchers and instructors who want to add something new to their compulsory courses.

Mathematical Methods in Science andEngineering includes:
* Comprehensive chapters on coordinates and tensors and on continuous groups and their representations
* An emphasis on physical motivation and the multidisciplinary nature of the methods discussed
* A coherent treatment of carefully selected topics in a style that makes advanced mathematical tools accessible to a multidisciplinary audience
* Exercises at the end of every chapter and plentiful examples throughout the book

Mathematical Methods in Science and Engineering is not only appropriate as a text for advanced undergraduate and graduate physics programs, but is also appropriate for engineering science and mechanical engineering departments due to its unique chapter coverage and easily accessible style. Readers are expected to be familiar with topics typically covered in the first three years of science and engineering undergraduate programs. Thoroughly class-tested, this book has been used in classes by more than 1,000 students over the past eighteen years. 2


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2006

Количество страниц: 679

Добавлена в каталог: 05.12.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Spacetime, derivatives      208
Spacetime, Minkowski      198
Special functions, confluent hypergeometric functions      104
Special functions, contour integrals      369
Special functions, differintegral representations      424
Special functions, hypergeometric functions      104
Special relativity, postulates      199
Special unitary group, SU(2)      236
Spherical Bessel functions      88
Spherical Hankel functions      377
Spherical Hankel functions, contour integral      376
Spherical harmonics      33 249
Spherical harmonics, addition theorem      264
Spherical harmonics, Condon — Shortley phase      34
Spherical harmonics, expansions      255
Spherical harmonics, factorization method      141
Spherical harmonics, Gegenbauer polynomials      73
Spherical harmonics, ladder operators      141 150
Spinor space, SU(2)      272
Step up/down operators, ladder operators      125
Stirling’s approximation      377
Structure constants      226
Sturm — Liouville equation      108
Sturm — Liouville equation, Green’s functions      567
Sturm — Liouville equation, hermitian operators      110
Sturm — Liouville equation, second canonical form      122
Sturm — Liouville operator, expansion theorem completeness      113
Sturm — Liouville operator, first canonical form      108
Sturm-Liouville system, boundary conditions      109
Sturm-Liouville system, commutation relations      238
Sturm-Liouville system, differential      240
Sturm-Liouville system, irreducible representation      269
Sturm-Liouville system, relation to R(3)      269
Sturm-Liouville system, spinor space      272
Sturm-Liouville system, SU(2) generators      237 238
Sturm-Liouville system, variational integral      535
Summation convention, Einstein      188
Summation of series      452
Summation of series, Euler-Maclaurin sum formula      454
Summation of series, using differintegrals      423 462
Summation of series, using the residue theorem      458
Symmetric top, factorization method      154
Symmetries, differential equations      285
Taylor series      339
Taylor series with multiple variables      448
Taylor series with the remainder      445
Tensor density      179 189
Tensor density, pseudotensor      180
Tensors, cartesian      178
Tensors, covariant divergence      194
Tensors, covariant gradiant      193
Tensors, curl      193
Tensors, differentiation      191
Tensors, equality      189
Tensors, general      181
Tensors, Laplacian      194
Tensors, some covariant derivatives      193
Time dilation      201
Trace      179
Triangle inequality      117
Trigonometric Fourier series      479
Trigonometric Fourier series, generalized Fourier series      114
Trigonometric Fourier series, properties      445
Trigonometric Fourier series, Uniform convergence      443
Unitary group, U(2)      234
Unitary representations      248
Unpinned Wiener measure      638
Variational integrals, eigenvalue problems      535
Variational integrals, elastic beam      527
Variational integrals, Euler equation      518
Variational integrals, geodesics      520
Variational integrals, Hamilton’s principle      533
Variational integrals, Lagrangian      533
Variational integrals, loaded cable      540
Variational integrals, presence of constraints      529
Variational integrals, presence of higher-order derivatives      527
Variational integrals, several dependent and independent variables      526
Variational integrals, several dependent variables      523
Variational integrals, several independent variables      524
Variational integrals, soap film      521
Variational integrals, upper bound to eigenvalues      537
Vector product      165
Vector spaces, complex      274
Vector spaces, inner product      273
Vector spaces, Minkowski      274
Vector spaces, real      272
Volterra equation      548
Wallis’s formula      471
Wave four-vector      208
Weierstrass function      479
Weierstrass M-test      444
Weight of a tensor      189
Wiener measure, pinned unpinned      637
Wiener measure, unpinned      638
Wiener path integral, Brownian motion      635
Worldline      204
Wronskian, Bessel functions      95
Wronskian, linear independence      41
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте