Авторизация
Поиск по указателям
Bayin S.S. — Mathematical Methods in Science and Engineering
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Mathematical Methods in Science and Engineering
Автор: Bayin S.S.
Аннотация: An innovative treatment of mathematical methods for a multidisciplinary audience
Clearly and elegantly presented, Mathematical Methods in Science and Engineering provides a coherent treatment of mathematical methods, bringing advanced mathematical tools to a multidisciplinary audience. The growing interest in interdisciplinary studies has brought scientists from many disciplines such as physics, mathematics, chemistry, biology, economics, and finance together, which has increased the demand for courses in upper-level mathematical techniques. This book succeeds in not only being tuned in to the existing practical needs of this multidisciplinary audience, but also plays a role in the development of new interdisciplinary science by introducing new techniques to students and researchers.
Mathematical Methods in Science and Engineering's modular structure affords instructors enough flexibility to use this book for several different advanced undergraduate and graduate level courses. Each chapter serves as a review of its subject and can be read independently, thus it also serves as a valuable reference and refresher for scientists and beginning researchers.
There are a growing number of research areas in applied sciences, such as earthquakes, rupture, financial markets, and crashes, that employ the techniques of fractional calculus and path integrals. The book's two unique chapters on these subjects, written in a style that makes these advanced techniques accessible to a multidisciplinary audience, are an indispensable tool for researchers and instructors who want to add something new to their compulsory courses.
Mathematical Methods in Science andEngineering includes:
* Comprehensive chapters on coordinates and tensors and on continuous groups and their representations
* An emphasis on physical motivation and the multidisciplinary nature of the methods discussed
* A coherent treatment of carefully selected topics in a style that makes advanced mathematical tools accessible to a multidisciplinary audience
* Exercises at the end of every chapter and plentiful examples throughout the book
Mathematical Methods in Science and Engineering is not only appropriate as a text for advanced undergraduate and graduate physics programs, but is also appropriate for engineering science and mechanical engineering departments due to its unique chapter coverage and easily accessible style. Readers are expected to be familiar with topics typically covered in the first three years of science and engineering undergraduate programs. Thoroughly class-tested, this book has been used in classes by more than 1,000 students over the past eighteen years. 2
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 2006
Количество страниц: 679
Добавлена в каталог: 05.12.2009
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Group theory, group character 248
Group theory, Holder inequality 442
Group theory, invariants 231
Group theory, Lorentz group 232 241
Group theory, Poincare group 241
Group, definition 224
Group, terminology 224
Hamilton’s principle 533
Hankel function 87
Harmonic functions 299
Harmonic oscillator, damped Laplace transforms 505
Harmonic oscillator, factorization method 156
Harmonic oscillator, Green’s functions 591
Harmonic oscillator, quantum mechanical Hermite polynomials 57
Harmonic oscillator, three dimensional 56
Harmonic series 432
Heat transfer equation, differintegrals 415
Helmholtz equation 9
Helmholtz equation, continuum limit 584
Helmholtz equation, Green’s functions 582
Helmholtz equation, three dimensions 593
Hermite equation 58 60
Hermite polynomials 59
Hermite polynomials, contour integral 373
Hermite polynomials, dipole calculations 64
Hermite polynomials, Gaussian 63
Hermite polynomials, generating function 60
Hermite polynomials, harmonic oscillator 57
Hermite polynomials, orthogonality and completeness 62
Hermite polynomials, recursion relations 62
Hermite polynomials, Rodriguez formula 61
Hermitian operators, boundary conditions 110
Hermitian operators, eigenvalues eigenfunctions 110
Hermitian operators, quantum mechanics 116
Hermitian operators, Sturm — Liouville operator 110
Hilbert space, function spaces 274
Hilbert space, inner product 117
Hilbert space, quantum mechanics 277
Hilbert — Schmidt theory 560
Hilbert — Schmidt theory, completeness of eigenfunctions 563
Hilbert — Schmidt theory, nonhermitian operators 564
Homogeneous Lorentz group 241
Hypergeometric equation 99
Hypergeometric functions 99
Improper transformations 170
Incomplete beta function 364
Incomplete gamma function 364
Indicial equation 14
Indicial equation, double root 45
Indicial equation, roots 16
Infinite products 468
Infinite products, cosine function 471
Infinite products, gamma function 471
Infinite products, sine function 470
Infinite series, convergence 431
Infinitesimal ring, Lie algebra 226
Infinitesimal transformations, orthogonal transformations 175
Inhomogeneous boundary conditions, Green’s functions 575
Inhomogeneous Lorentz group 241
Inner product space 273
Inner product, Hilbert space 117
Integral equations via integral transforms 559
Integral equations vs. differential equations 548
Integral equations, Cauchy formula 549
Integral equations, classification 548
Integral equations, eigenvalue problems Hilbert — Schmidt theory 560
Integral equations, Fredholm equation 548
Integral equations, Green’s functions 568
Integral equations, homogeneous 548
Integral equations, methods of solution Neumann series 554
Integral equations, nonhermitian kernels 564
Integral equations, separable kernels 556
Integral equations, successive iterations 554
Integral equations, Volterra equation 548
Integral transforms 10
Integral transforms, Fourier transforms 478
Integral transforms, general 477
Integral transforms, Hankel transform Fourier — Bessel transform 479
Integral transforms, integral equations 559
Integral transforms, Laplace transforms 478
Integral transforms, Mellin transform 479
Integral transforms, Mellin transform, relations 511
Integral, n-fold 384
Invariance 197
Inverse Laplace transforms, Bromwich integral 492
Inverse Laplace transforms, Lerch theorem 491
Inversion of power series 451
Irreducible representation 247
Isolated singular point 297 347
Isomorphism 239
Isoperimetric problems 529
Jacobi polynomials 41
Jacobi polynomials, contour integral 375
Jacobian of transformation 190
Jordan’s lemma 357
Kronecker delta 179
Kummer formula 106
Ladder operators step up/down operators 124 125
Laguerre equation 45
Laguerre polynomials 46
Laguerre polynomials, contour integral 371 372
Laguerre polynomials, generating function 46
Laguerre polynomials, orthogonality and completeness 48
Laguerre polynomials, recursion relations 50
Laguerre polynomials, Rodriguez formula 47
Laguerre polynomials, special values 50
Laguerre series 46
Laplace equation 9
Laplace equation, variational analysis 525
Laplace transforms 490
Laplace transforms in n dimensions 511
Laplace transforms, basic 492
Laplace transforms, Bessel’s equation 507
Laplace transforms, damped oscillator 505
Laplace transforms, definite integrals 502
Laplace transforms, derivatives 503
Laplace transforms, differintegrals 413
Laplace transforms, electromagnetic waves 506
Laplace transforms, fractional derivatives 396
Laplace transforms, inverses Bromwich integral 492
Laplace transforms, Mellin transforms 511
Laplace transforms, partial fractions 501
Laplace transforms, theorems 494
Laplacian, covariant 194
Laurent series 341
Laurent series, short cut 346
Legendre equation 13
Legendre polynomials 18
Legendre polynomials, generating function 19
Legendre polynomials, normalization constant 26
Legendre polynomials, orthogonality and completeness 24
Legendre polynomials, recursion relations 21
Legendre polynomials, rodriguez formula 19
Legendre polynomials, Schlofli formula 370
Legendre polynomials, special integrals 23
Legendre polynomials, special values 22
Legendre series 15
Legendre series, convergence Gauss test 436
Leibniz formula 25
Letnikov 385
Levi — Civita symbol 180
Lie algebra, generators of SU(2) differential 240
Lie algebra, group differential operators 228
Lie algebra, infinitesimal ring 226
Lie algebra, rotation group R(3) 227
Lie algebra, SU(2) 237
Lie groups, continuous groups 224
Line element 184 199
Linear independence, Wronskian 41
Lorentz contraction, length contraction 201
Lorentz group, commutation relations 244
Lorentz group, generators 244
Lorentz group, homogeneous inhomogeneous 241
Lorentz transformation 199
Lorentz transformation, boost 244
Lorentz transformation, group invariants 232
Lorentz transformation, orientation of axis 209
M-test, Weierstrass M-test 444
Maclaurin series 446
Mappings 300
Mappings, conformal 313
Mappings, inversion 301 302
Mappings, many-to-one 306
Mappings, one-to-one 304
Mappings, one-to-two 306
Mappings, rotation 301
Mappings, Schwarz-Christoffel transformations 322
Mappings, translation 300
Mappings, two-to-one 304
Maxwell’s equations 211
Maxwell’s equations, potentials 214
Maxwell’s equations, transformations 213
Mean square displacement 380
Mellin transforms 512
MEMS, Casimir effect 468
Metric tensor 184
Metric tensor, covariant derivative 194
Minkowski metric 202
Minkowski spacetime 198
Minkowski’s inequality 442
Mittag-Leffler theorem, infinite products 470
Mlittag — Leffler functions 418
Modified Bessel functions 88
Modulus 294
Multipole expansion 267
Neumann function 87
Neumann series, error calculation 556
Newton’s equations, covariant 215
Normal form, generators 280
Orthogonal transformations 167 170
Orthogonality and completeness, associated Laguerre polynomials 53
Orthogonality and completeness, associated Legendre polynomials 31
Orthogonality and completeness, Bessel functions 90
Orthogonality and completeness, Chebyshev polynomials 78
Orthogonality and completeness, Gegenbauer polynomials 75
Orthogonality and completeness, Hermite polynomials 62
Orthogonality and completeness, Laguerre polynomials 48
Orthogonality and completeness, Legendre polynomials 24
Orthogonality and completeness, Sturm — Liouville operators 111
Outer product 179 189
Parceval theorems 487
Partial fractions, Laplace transforms 501
Partial sum 431
Path integrals, Bloch formula 640
Path integrals, ESKC relation 635 649
Path integrals, Feynman path integral 655
Path integrals, Feynman phase space path integral 659
Path integrals, Feynman — Kac formula 639
Path integrals, finite elements method 650
Path integrals, interpretation 643
Path integrals, methods of calculation 646
Path integrals, Schrodinger equation 658
Path integrals, semiclassical method 650
Path integrals, time slice method 647
Path integrals, Wiener path integral 635
Pauli spin matrices 236
Permutation symbol 190
Pinned Wiener measure 637
Poincare group 241
Point groups 278
Point source initial condition, Green’s functions 609
Poisson equation, Green’s functions 597
Power series 449
Prolongation, extension generators 282
Propagators 609
Proper time 204 205
Proper transformations 170
Pseudo — Euclidean 199
Pseudotensor 180
Quantum mechanics, Hermitian operators 116
Quotient theorem 189
Quotient theorem, R(3) and SU(2) 269
Quotient theorem, R(3) relation to SU(2) 269
Rank 178
Rayleigh-Ritz method, variational integrals 539
Recursion relation, associated Laguerre polynomials 53
Recursion relation, Bessel functions 90
Recursion relation, Hermite polynomials 62
Recursion relation, Laguerre polynomials 50
Recursion relation, Legendre polynomials 21
Reducible representation 247
Regular singular point, Probenius method 16
Regularization, Renormalization 465
Relativistic energy, binomial formula 447
Relativistic mass 207
Renormalization 465
Representation space 246
Residue theorem 347
Rest mass 205
Retarded Green’s functions 624
Riemann curvature scalar 195
Riemann curvature tensor 195
Riemann formula 395
Riemann sheets, branch cuts 308
Riemann Theorem 440
Riemann zeta function 434
Riemann-Liouville, derivative 387
Rodriguez formula, associated Laguerre polynomials 53
Rodriguez formula, Hermite polynomials 61
Rodriguez formula, Laguerre polynomials 47
Rodriguez formula, Legendre polynomials 19
Rotation group, representation 248
Rotation group, spherical harmonics 249
Rotation matrix, differential equation 262
Rotation matrix, evaluation 260
Rotation matrix, inverse 261
Rotation matrix, orthogonal transformations 170
Rotation matrix, spherical harmonics 258
Rotation operator, Euler angles 251
Schlofli formula 370
Schlofli integral formula, Legendre polynomials 370
Schroedinger equation 10 43
Schroedinger equation, bound states 601
Schroedinger equation, factorization method single electron atom 151
Schroedinger equation, Feynman path integral 658
Schroedinger equation, Green’s function 615
Schroedinger equation, propagator free particle 615
Schur’s lemma 247
Schwartz inequality 118
Schwarz — Cauchy inequality 442
Schwarz-Christoffel transformations 324
Schwarz-Christoffel transformations, fringe effects 325
Second canonical form, Sturm — Liouville operator 122
Self-adjoint differential operator 107
Semi-infinite parallel plate, mappings fringe fields 325
Semi-integrals 413
Semiderivatives 413
Semidifferential equations 419
Separation of variables 10
Series, algebra 439
Series, inequalities 442
Series, rearrangement 440
Similarity transformations 175
Simple pole 347
Single-electron atom models 44
Singular points, classification 347
Singular points, essential 347
Singular points, isolated 347
Singular points, simple pole 347
Soap film 521
Реклама