Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Bayin S.S. — Mathematical Methods in Science and Engineering
Bayin S.S. — Mathematical Methods in Science and Engineering



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Mathematical Methods in Science and Engineering

Автор: Bayin S.S.

Аннотация:

An innovative treatment of mathematical methods for a multidisciplinary audience

Clearly and elegantly presented, Mathematical Methods in Science and Engineering provides a coherent treatment of mathematical methods, bringing advanced mathematical tools to a multidisciplinary audience. The growing interest in interdisciplinary studies has brought scientists from many disciplines such as physics, mathematics, chemistry, biology, economics, and finance together, which has increased the demand for courses in upper-level mathematical techniques. This book succeeds in not only being tuned in to the existing practical needs of this multidisciplinary audience, but also plays a role in the development of new interdisciplinary science by introducing new techniques to students and researchers.

Mathematical Methods in Science and Engineering's modular structure affords instructors enough flexibility to use this book for several different advanced undergraduate and graduate level courses. Each chapter serves as a review of its subject and can be read independently, thus it also serves as a valuable reference and refresher for scientists and beginning researchers.

There are a growing number of research areas in applied sciences, such as earthquakes, rupture, financial markets, and crashes, that employ the techniques of fractional calculus and path integrals. The book's two unique chapters on these subjects, written in a style that makes these advanced techniques accessible to a multidisciplinary audience, are an indispensable tool for researchers and instructors who want to add something new to their compulsory courses.

Mathematical Methods in Science andEngineering includes:
* Comprehensive chapters on coordinates and tensors and on continuous groups and their representations
* An emphasis on physical motivation and the multidisciplinary nature of the methods discussed
* A coherent treatment of carefully selected topics in a style that makes advanced mathematical tools accessible to a multidisciplinary audience
* Exercises at the end of every chapter and plentiful examples throughout the book

Mathematical Methods in Science and Engineering is not only appropriate as a text for advanced undergraduate and graduate physics programs, but is also appropriate for engineering science and mechanical engineering departments due to its unique chapter coverage and easily accessible style. Readers are expected to be familiar with topics typically covered in the first three years of science and engineering undergraduate programs. Thoroughly class-tested, this book has been used in classes by more than 1,000 students over the past eighteen years. 2


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2006

Количество страниц: 679

Добавлена в каталог: 05.12.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Group theory, group character      248
Group theory, Holder inequality      442
Group theory, invariants      231
Group theory, Lorentz group      232 241
Group theory, Poincare group      241
Group, definition      224
Group, terminology      224
Hamilton’s principle      533
Hankel function      87
Harmonic functions      299
Harmonic oscillator, damped Laplace transforms      505
Harmonic oscillator, factorization method      156
Harmonic oscillator, Green’s functions      591
Harmonic oscillator, quantum mechanical Hermite polynomials      57
Harmonic oscillator, three dimensional      56
Harmonic series      432
Heat transfer equation, differintegrals      415
Helmholtz equation      9
Helmholtz equation, continuum limit      584
Helmholtz equation, Green’s functions      582
Helmholtz equation, three dimensions      593
Hermite equation      58 60
Hermite polynomials      59
Hermite polynomials, contour integral      373
Hermite polynomials, dipole calculations      64
Hermite polynomials, Gaussian      63
Hermite polynomials, generating function      60
Hermite polynomials, harmonic oscillator      57
Hermite polynomials, orthogonality and completeness      62
Hermite polynomials, recursion relations      62
Hermite polynomials, Rodriguez formula      61
Hermitian operators, boundary conditions      110
Hermitian operators, eigenvalues eigenfunctions      110
Hermitian operators, quantum mechanics      116
Hermitian operators, Sturm — Liouville operator      110
Hilbert space, function spaces      274
Hilbert space, inner product      117
Hilbert space, quantum mechanics      277
Hilbert — Schmidt theory      560
Hilbert — Schmidt theory, completeness of eigenfunctions      563
Hilbert — Schmidt theory, nonhermitian operators      564
Homogeneous Lorentz group      241
Hypergeometric equation      99
Hypergeometric functions      99
Improper transformations      170
Incomplete beta function      364
Incomplete gamma function      364
Indicial equation      14
Indicial equation, double root      45
Indicial equation, roots      16
Infinite products      468
Infinite products, cosine function      471
Infinite products, gamma function      471
Infinite products, sine function      470
Infinite series, convergence      431
Infinitesimal ring, Lie algebra      226
Infinitesimal transformations, orthogonal transformations      175
Inhomogeneous boundary conditions, Green’s functions      575
Inhomogeneous Lorentz group      241
Inner product space      273
Inner product, Hilbert space      117
Integral equations via integral transforms      559
Integral equations vs. differential equations      548
Integral equations, Cauchy formula      549
Integral equations, classification      548
Integral equations, eigenvalue problems Hilbert — Schmidt theory      560
Integral equations, Fredholm equation      548
Integral equations, Green’s functions      568
Integral equations, homogeneous      548
Integral equations, methods of solution Neumann series      554
Integral equations, nonhermitian kernels      564
Integral equations, separable kernels      556
Integral equations, successive iterations      554
Integral equations, Volterra equation      548
Integral transforms      10
Integral transforms, Fourier transforms      478
Integral transforms, general      477
Integral transforms, Hankel transform Fourier — Bessel transform      479
Integral transforms, integral equations      559
Integral transforms, Laplace transforms      478
Integral transforms, Mellin transform      479
Integral transforms, Mellin transform, relations      511
Integral, n-fold      384
Invariance      197
Inverse Laplace transforms, Bromwich integral      492
Inverse Laplace transforms, Lerch theorem      491
Inversion of power series      451
Irreducible representation      247
Isolated singular point      297 347
Isomorphism      239
Isoperimetric problems      529
Jacobi polynomials      41
Jacobi polynomials, contour integral      375
Jacobian of transformation      190
Jordan’s lemma      357
Kronecker delta      179
Kummer formula      106
Ladder operators step up/down operators      124 125
Laguerre equation      45
Laguerre polynomials      46
Laguerre polynomials, contour integral      371 372
Laguerre polynomials, generating function      46
Laguerre polynomials, orthogonality and completeness      48
Laguerre polynomials, recursion relations      50
Laguerre polynomials, Rodriguez formula      47
Laguerre polynomials, special values      50
Laguerre series      46
Laplace equation      9
Laplace equation, variational analysis      525
Laplace transforms      490
Laplace transforms in n dimensions      511
Laplace transforms, basic      492
Laplace transforms, Bessel’s equation      507
Laplace transforms, damped oscillator      505
Laplace transforms, definite integrals      502
Laplace transforms, derivatives      503
Laplace transforms, differintegrals      413
Laplace transforms, electromagnetic waves      506
Laplace transforms, fractional derivatives      396
Laplace transforms, inverses Bromwich integral      492
Laplace transforms, Mellin transforms      511
Laplace transforms, partial fractions      501
Laplace transforms, theorems      494
Laplacian, covariant      194
Laurent series      341
Laurent series, short cut      346
Legendre equation      13
Legendre polynomials      18
Legendre polynomials, generating function      19
Legendre polynomials, normalization constant      26
Legendre polynomials, orthogonality and completeness      24
Legendre polynomials, recursion relations      21
Legendre polynomials, rodriguez formula      19
Legendre polynomials, Schlofli formula      370
Legendre polynomials, special integrals      23
Legendre polynomials, special values      22
Legendre series      15
Legendre series, convergence Gauss test      436
Leibniz formula      25
Letnikov      385
Levi — Civita symbol      180
Lie algebra, generators of SU(2) differential      240
Lie algebra, group differential operators      228
Lie algebra, infinitesimal ring      226
Lie algebra, rotation group R(3)      227
Lie algebra, SU(2)      237
Lie groups, continuous groups      224
Line element      184 199
Linear independence, Wronskian      41
Lorentz contraction, length contraction      201
Lorentz group, commutation relations      244
Lorentz group, generators      244
Lorentz group, homogeneous inhomogeneous      241
Lorentz transformation      199
Lorentz transformation, boost      244
Lorentz transformation, group invariants      232
Lorentz transformation, orientation of axis      209
M-test, Weierstrass M-test      444
Maclaurin series      446
Mappings      300
Mappings, conformal      313
Mappings, inversion      301 302
Mappings, many-to-one      306
Mappings, one-to-one      304
Mappings, one-to-two      306
Mappings, rotation      301
Mappings, Schwarz-Christoffel transformations      322
Mappings, translation      300
Mappings, two-to-one      304
Maxwell’s equations      211
Maxwell’s equations, potentials      214
Maxwell’s equations, transformations      213
Mean square displacement      380
Mellin transforms      512
MEMS, Casimir effect      468
Metric tensor      184
Metric tensor, covariant derivative      194
Minkowski metric      202
Minkowski spacetime      198
Minkowski’s inequality      442
Mittag-Leffler theorem, infinite products      470
Mlittag — Leffler functions      418
Modified Bessel functions      88
Modulus      294
Multipole expansion      267
Neumann function      87
Neumann series, error calculation      556
Newton’s equations, covariant      215
Normal form, generators      280
Orthogonal transformations      167 170
Orthogonality and completeness, associated Laguerre polynomials      53
Orthogonality and completeness, associated Legendre polynomials      31
Orthogonality and completeness, Bessel functions      90
Orthogonality and completeness, Chebyshev polynomials      78
Orthogonality and completeness, Gegenbauer polynomials      75
Orthogonality and completeness, Hermite polynomials      62
Orthogonality and completeness, Laguerre polynomials      48
Orthogonality and completeness, Legendre polynomials      24
Orthogonality and completeness, Sturm — Liouville operators      111
Outer product      179 189
Parceval theorems      487
Partial fractions, Laplace transforms      501
Partial sum      431
Path integrals, Bloch formula      640
Path integrals, ESKC relation      635 649
Path integrals, Feynman path integral      655
Path integrals, Feynman phase space path integral      659
Path integrals, Feynman — Kac formula      639
Path integrals, finite elements method      650
Path integrals, interpretation      643
Path integrals, methods of calculation      646
Path integrals, Schrodinger equation      658
Path integrals, semiclassical method      650
Path integrals, time slice method      647
Path integrals, Wiener path integral      635
Pauli spin matrices      236
Permutation symbol      190
Pinned Wiener measure      637
Poincare group      241
Point groups      278
Point source initial condition, Green’s functions      609
Poisson equation, Green’s functions      597
Power series      449
Prolongation, extension generators      282
Propagators      609
Proper time      204 205
Proper transformations      170
Pseudo — Euclidean      199
Pseudotensor      180
Quantum mechanics, Hermitian operators      116
Quotient theorem      189
Quotient theorem, R(3) and SU(2)      269
Quotient theorem, R(3) relation to SU(2)      269
Rank      178
Rayleigh-Ritz method, variational integrals      539
Recursion relation, associated Laguerre polynomials      53
Recursion relation, Bessel functions      90
Recursion relation, Hermite polynomials      62
Recursion relation, Laguerre polynomials      50
Recursion relation, Legendre polynomials      21
Reducible representation      247
Regular singular point, Probenius method      16
Regularization, Renormalization      465
Relativistic energy, binomial formula      447
Relativistic mass      207
Renormalization      465
Representation space      246
Residue theorem      347
Rest mass      205
Retarded Green’s functions      624
Riemann curvature scalar      195
Riemann curvature tensor      195
Riemann formula      395
Riemann sheets, branch cuts      308
Riemann Theorem      440
Riemann zeta function      434
Riemann-Liouville, derivative      387
Rodriguez formula, associated Laguerre polynomials      53
Rodriguez formula, Hermite polynomials      61
Rodriguez formula, Laguerre polynomials      47
Rodriguez formula, Legendre polynomials      19
Rotation group, representation      248
Rotation group, spherical harmonics      249
Rotation matrix, differential equation      262
Rotation matrix, evaluation      260
Rotation matrix, inverse      261
Rotation matrix, orthogonal transformations      170
Rotation matrix, spherical harmonics      258
Rotation operator, Euler angles      251
Schlofli formula      370
Schlofli integral formula, Legendre polynomials      370
Schroedinger equation      10 43
Schroedinger equation, bound states      601
Schroedinger equation, factorization method single electron atom      151
Schroedinger equation, Feynman path integral      658
Schroedinger equation, Green’s function      615
Schroedinger equation, propagator free particle      615
Schur’s lemma      247
Schwartz inequality      118
Schwarz — Cauchy inequality      442
Schwarz-Christoffel transformations      324
Schwarz-Christoffel transformations, fringe effects      325
Second canonical form, Sturm — Liouville operator      122
Self-adjoint differential operator      107
Semi-infinite parallel plate, mappings fringe fields      325
Semi-integrals      413
Semiderivatives      413
Semidifferential equations      419
Separation of variables      10
Series, algebra      439
Series, inequalities      442
Series, rearrangement      440
Similarity transformations      175
Simple pole      347
Single-electron atom models      44
Singular points, classification      347
Singular points, essential      347
Singular points, isolated      347
Singular points, simple pole      347
Soap film      521
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте