|
|
Авторизация |
|
|
Поиск по указателям |
|
|
|
|
|
|
|
|
|
|
Ebbinghaus H.-D., Flum J. — Finite Model Theory |
|
|
Предметный указатель |
331
246
249
39
21 37 41 53 59 72 156
246
155
5
219
321
72
15
57
50
172
169
236
40
7
41
179
105
6
334
328
223
273
271
270
271
269
179
155
248
210
206
244
261
173
203 204
179
205 206
265
219
212
249
199
224
226
243
268
268
273
268
209
209
268
205
210
221
221 268
5
219
218
14
10
15
243
211
272
158
332 334
332
332
334
276
38
-structure 1
179
239
242
174
120
16
17
50
50
42
312
64
108
71
74
281
281
334
240
309
308
322
1
1
125 133
76 84
45 73
76
78
77
77
20
52
43
208
312
179
40
8
59
7
239
105
336
54
240
241
3
4
9
6
3
4
297
48
213
42
51
38
20
43
217
14
3
24
109
331
23
309
323
122
122
| 289
290
296
3
4
50
6
7
38
52
60
155
242
59
59
59
243
47
40
47
314
213
38
106
7
158
229
26
and NPTIME 139 150 151 157
86
7
1
3
156
239
6
7
10
8
18
5
322
131
107
4
(M,f) 290
(M,O) 331
ACCEPT 126 132
Acceptable 126
Acceptor 162
Almost all 72
Alphabet 105
Antitone 167 172 192
Approximable 280
APX 281
Arity 1
Arity hierarchy 268 272 273
Arity, of a quantifier 309
ASSIGNMENT 6
ATC 261
Automaton 106
Automaton, deterministic 106
Automaton, nondeterministic 106
Axiomatizable, in 333 334
Axiomatizable, in 333 334
Axiomatizable, in 54
Axiomatizable, in 53
Axiomatizable, in 53
Axiomatizable, in 41
Axiomatizable, in a logic 124
Axiomatizable, in FO 14 20 150 252
Axiomatizable, in FO(M-LFP) 217
Axiomatizable, in SO 150
Back property 20
Back property, s- 51
Ball 26
Ball, r- 26
Base of an instruction 132
Basic term 248
Beth property 63
Beth's theorem 63
Blank letter 125 130
Body of a clause 239
Bounded 57 58
Bounded, fixed-point 204
Bounded, s- 57
Breadth, of a DATALOG program 242
Breadth, of an S-DATALOG program 242
Canonization, 294
Canonization, on S 301
Canonization, LOGSPACE- 294
Canonization, PSPACE- 294
Canonization, PTIME- 291—293
Capture 157
Capture, a complexity class 151 288
Capture, effectively strongly 290 295 325
Capture, effectively strongly on S 296
Capture, PTIME effectively strongly 290 292 294 300
Capture, PTIME effectively strongly on GRAPH 300
Capture, strongly 157 288
Cardinality 4
cell 125
Cell, virtual 125 130
Circuit, Hamiltonian 2 113 327
Class, bounded 57
Class, elementary 14
Class, elementary relative to 14
Class, finitely axiomatizable 14
Class, fixed-point bounded 204
Class, free parametric 80
Class, indiscernible 222
Class, nontrivial free parametric 80
Class, nontrivial parametric 77
Class, of finite structures 14
Class, of structures 10
Class, parametric 75
Class, s-bounded 57
Class, s-rigid 204
Clause 239
CLIQUE 2 113
Closed subset 222
Closed under isomorphisms 10
Closure, alternating transitive 261
Closure, deterministic transitive 123 220
Closure, plus 108
Closure, positive 108
Closure, transitive 123 220
Co-NPTIME 157
Colour type 61
Compactness Theorem 8
Compatible 76
Complement of a complexity class 155
Complete, NPTIME- with respect to FO(DTC) reductions 328
Complete, NPTIME- with respect to logspace reductions 327 328
Complete, strongly PTIME- with respect to FO-reductions 325
Complete, with respect to -reductions 321
Complete, with respect to -reductions 324
Completeness theorem 8
Complexity class, as a class of ordered structures 153
Complexity class, in complexity theory 153
Component, connected 2 30
Component, of a graph 2
Computable, PTIME- 204 291
Concatenation of languages 107
Configuration 128 134
Configuration, accepting 134
Configuration, oracle 331
Configuration, starting 136
Conn 2 23 122
Connected component 30
|
|
|
Реклама |
|
|
|