Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Enderton H.B. — A Mathematical Introduction to Logic
Enderton H.B. — A Mathematical Introduction to Logic



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: A Mathematical Introduction to Logic

Àâòîð: Enderton H.B.

Àííîòàöèÿ:

In his textbook for an advanced undergraduate introductory mathematics course in logic ranging from a quarter to a year, Enderton (U. of California-Los Angeles) discusses proofs, truth, and computability for students with some mathematical background and interests but have not studied logic before. He intends the second edition to be more accessible to typical undergraduate students, more flexible for instructors, and more focused on the influence of theoretical computer science on logic. He mentions no date for the first edition.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: Second Edition

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 317

Äîáàâëåíà â êàòàëîã: 29.11.2009

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Exponentiation, representation of      276—281
Exportation      27
Expressions      15—16 73—74
Extension      95
Extensionality, principle of      2
f      20
Faithful interpretations      171—172
Falsity      20
Field (of relation)      4
Fields      87 92 93—94 285
Fields, real-closed      104
Fields, theory of      155—156 158—159 See
Finite graphs      93
Finite langnage      142
Finite model property      163
Finite models      147—151
Finite sequence (string)      4
Finite set      6
Finitely axiomatizable theories      156
Finitely valid      147
First-order language      67—72 167
First-order language, examples of      70—73
First-order language, formulas      73—76
First-order language, free variables      76—77
First-order language, notation      77—79
First-order logic completeness theorem      135—145
First-order logic deductive calculus      109—129
First-order logic interpretations between theories      164—172
First-order logic language of      69—79
First-order logic models of theories      147—162
First-order logic parsing algorithm      105—108
First-order logic soundness theorem      131—135
First-order logic translation methods      68—69
First-order logic truth and models      80—99
Fischer, Michael      201
Fixed-Point Lemma      234—235
fld R      4
Formal languages      11—13
Formal languages, computer      13
Formal languages, features in      11—13
Formal languages, sentential logic and      13—19
Formula-building operations      17 75
Formulas, atomic      74—75 83
Formulas, comprehension      284
Formulas, generalization of      116
Formulas, satisfaction of      83—86
Formulas, unique readability of      40—41 108
Formulas, well-formed (wffs)      12 17—18 75
Free variables      76—77
Freely generated sets      39—40 See
Frege, Gottlob      152
Function comprehension formulas      284
Function symbols      70 79 128
Function universe      302
Function variables      282
Functions      5
functions, defining      164—166
functions, recursive      247—263
Functions, representable      212—217
Functions, Skolem      145 287—290
gen      122
General pre-structure      301
General second—order logic      303
General structures      299—306
Generalization of formulas      112
Generalization on constants      123—124
Generalization Theorem      117—118
Generated sets      37
Generated sets, freely      39
Goedel, Kurt      145 152
Goedel, Kurt, $\beta$-function      278—279 281
Goedel, Kurt, completeness theorem      135—145
Goedel, Kurt, incompleteness theorem      145 236 256 257—258
Goedel, Kurt, numbers      91 184 225—234 286
Goedel, Kurt, second incompleteness theorem      266—270 274—275
Goldbach's conjecture      263
graphs      92
Graphs of function      209
Graphs, connected      146
Graphs, directed      82 93
Graphs, finite      93
groups      38 92
Halting problem unsolvability of      254
Henkin, Leon      145
Herbrand expansions      290—294
Herbrand universe      291
Herbrand's theorem      293
Herbrand, Jacques      293
Heterological      186
Hilbert, David      152
Homomorphism theorem      96—97
Homomorphisms      94—99
Hyperreal numbers      See "Nonstandard analysis"
Hypothesis      23 67 109 213
Identity function      5
Identity interpretation      168
Iff, use of      1
Implicant      59
Implicitly definable relations      287
Incompleteness theorem (Goedel), first      145 236 256 257—258
Incompleteness theorem (Goedel), second      266—270 274—275
Incompleteness theorem (Goedel), undecidability and      234—245
Inconsistent sets      119 See
Independent axiomatizations      28
Index of recursive partial function      253
Index of recursively enumerable set      255
Individual variables      282—283
Induction      30 34—38
Induction axiom      See "Peano induction postulate"
Induction principle      18—19 37 44 111—112
Inductive sets      35
Infinitely close      177
Infinitesimal      176
Initial segment      4
Input/output format      62 209
Instances      291
Integers      2
Interpolation theorem      53
Interpretations      80
Interpretations between theories      164—172 273
Intersection      3
IR      261
Isomorphic embedding      94
Isomorphic structures      94
Isomorphism      94
K      254
Kleene normal form      249—250 252—254 257
Kleene's theorem      64 239
Lagrange's theorem      166
Languages of equality      285 See "Formal "Second-order
Languages, many-sorted      299—301
Least-zero operator      216 220—221
Leibniz, G.W. v.      173
Length      221
lh      221
Lindenbaum's theorem      246
Linear connectives      52
Linear transformations      99
Literal      59
ln      194
Loeb's theorem      269
Loewenheim — Skolem theorem      103 151—155 190
Loewenheim — Skolem theorem in many-sorted logic      299
Loewenheim — Skolem theorem in second-order logic      285 302—303
Loewenheim, Leopold      151
Logical axioms      110 112 125
Logical axioms, recursiveness of      232
Logical axioms, validity of      131—134
Logical implication      88—99
Logical symbols      14 69—70
Logically equivalence      88
Los-Vaught test      157—160 190
LST theorem      154
Lukasiewicz, Jan      33 See
Majority connective      45
Malcev, Anatolii      145
Many-one reducibility      256
Many-sorted logic      295—299
Many-sorted logic, application to second-order logic      299—301
Many-valued logic      20
MAP      5
Map coloring      65 146
Material conditional      21
Membership predicate      299—300
meta-language      89 129
Metamathematics, use of term      69
Metatheorems      116—120
MN      203
MOD      92
Models      80—99
Models of analysis      304—306
Models of theories      147—162
modus ponens      66 110—111 116
Monotone connectives      54
Monotone recursion      224
MP      122
NAND      51
Natural numbers      2 See
Negation symbol      14 17
Newton, Isaac      173
Nonlogical symbols      14
Nonprime formulas      114
Nonstandard analysis      173—181
Nonstandard analysis, algebraic properties      176—178
Nonstandard analysis, construction of hyperreals      173—176
Nonstandard analysis, convergence in      178—180
Nonstandard models      152—153 183 304
Normal form theorem, for recursive functions      252—253
Normal form theorem, Skolem      288—289
Notation      77—79
NP      26 101
Number theory      182
Number theory, language of      70 72 182
Number theory, with addition      196—197 280
Number theory, with exponentiation      202—205 280
Number theory, with multiplication      276—281
Number theory, with ordering      193—196 280
Number theory, with successor      187—193 280
Numerals      183—184 209
Numeralwise determined formulas      206 210—212
Object language      89
Occur free      76—77
One-sorted logic      296—299
One-to-one functions      5
Onto      5
Operating System      253
Operations      5
Ordered n-tuples      3—4
Ordered pairs      3 4
Ordering relations      6 93 159 284
PA      269
Pairing function      220 277—278
Pairwise disjoint set      3
Parameter Theorem      258—260 264
Parameters      14 70
Parentheses, use of      33 78
Parity connective      53
Parsing algorithm in first-order logic      105—108
Parsing algorithm in sentential logic      29—33
Parsing formulas      29—33 107—108
Parsing terms      106—107
Partial functions      250
Partial recursive functions      See "Recursive functions partial"
Partition      6
Peano arithmetic (PA)      269—270
Peano induction postulate      193 284 286—287
Periodic set      201
Permutation      100
Polish notation      32—33 74
Polynomial-time decidable      26 115
Post, Emil      47 152 261
Power set      2—3
Prb      266
Predicate calculus      See "First-order logic"
Predicate symbols      70 79 128
Predicate variables      282
Prenex formulas      160
Prenex normal form      160—161
Prepositional logic      14
Presburger's theorem      197—198
Prime formulas      114—115
Prime implicants      59
Prime numbers      91 184 218—219
Primitive recursion      221—222 227
Principia Mathematica (Whitehead and Russell)      152
Proof, nature of      109 See
Proposition symbol      14—15
Psb      232
Qn      121 160
Quantifier capture      113
Quantifier symbol, universal      80
Quantifiers      70
Quantifiers, bounded      204 210—211
Quantifiers, elimination of      190—192
Quantifiers, existential      287 288
Quotient structure      140
RAA      122
Rabin, Michael      201
Ramified analytical sets      306
ran R      4
Range (of relation)      4
Re-replacement lemma      130
Reasonable language      142—144 See
Recursion      32 38—4
Recursion theorem      39—42
Recursion, monotone      224
Recursion, primitive      221—222 227
recursive functions      247—250
Recursive functions, normal form      248—250
Recursive functions, partial      250—258 262
Recursive functions, reduction of decision problems      258—260
Recursive functions, register machines      261—263
Recursive relations      207—210 232 See
Recursively axiomatizable theories      233 240
Recursively enumerable (r.e.) relations      233 238—241
Recursively inseparable sets      245
Recursively numbered language      225
Reductio ad absurdum      119 121
Reducts of number theory      182—183 193—202
Reflexive relations      5
Register machines      208 261—263
Relation comprehension formulas      284
Relation universe      301
Relations      4—6
Relay circuits      57
Representable functions      212—217
Representable relations      205—206
Representable relations and numeralwise determined formulas      206 210—212
Representable relations, weakly      241—242
Resolution      53
Restriction      5 221
Rice's theorem      260
Rigid structure      98
Robinson, Abraham      173
Root of tree      7
Rule EI      124—125 145
Rule T      118
Rules of Inference      110
s(x | d)      84
S-m-n theorem      See "Parameter theorem"
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå