Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Mcmullen P., Schulte E. — Abstract Regular Polytopes
Mcmullen P., Schulte E. — Abstract Regular Polytopes



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Abstract Regular Polytopes

Авторы: Mcmullen P., Schulte E.

Аннотация:

geometrical research, which began with regular polygons and polyhedra. They are highly symmetric combinatorial structures with distinctive geometric, algebraic or topological properties; in many ways more fascinating than traditional regular polytopes and tessellations. The rapid development of the subject in the past 20 years has resulted in a rich new theory, featuring an attractive interplay of mathematical areas, including geometry, combinatorics, group theory and topology. Abstract regular polytopes and their groups provide an appealing new approach to understanding geometric and combinatorial symmetry. This is the first comprehensive up-to-date account of the subject and its ramifications, and meets a critical need for such a text, because no book has been published in this area of classical and modern discrete geometry since Coxeter's Regular Polytopes (1948) and Regular Complex Polytopes (1974). The book should be of interest to researchers and graduate students in discrete geometry, combinatorics and group theory.

Abstract regular polytopes stand at the end of more than two millennia of geometrical research, which began with regular polygons and polyhedra. The rapid development of the subject in the past twenty years has resulted in a rich new theory featuring an attractive interplay of mathematical areas, including geometry, combinatorics, group theory and topology. This is the first comprehensive, up-to-date account of the subject and its ramifications. It meets a critical need for such a text, because no book has been published in this area since Coxeter's "Regular Polytopes" (1948) and "Regular Complex Polytopes" (1974).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2002

Количество страниц: 551

Добавлена в каталог: 23.11.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Tessellation, cubic      166 258
Tessellation, euclidean      15
Tessellation, face-to-face      15 152
Tessellation, on manifold      152
Tessellation, regular      see Regular tessellation
Tessellation, with finite or infinite cells      see Honeycomb
tetrahedron      3 11 200 218
Theaetetus      3
Thin      21 27
Tile      152
Tits cone      70
Tits, J.      7 21 36 79
Todd - Coxeter algorithm      272 282 451 460 463 467 502
Todd, X A.      289
Toroid      154
Toroid, chiral      177
Toroid, regular      see Regular toroid
Torus      150
Triangle group      77
Triangle group, generalized      320-332
Turn      313
Twisting operation      244-246
Type of map      17
Type of polytope      30
Uccello, P.      5
Universal polytope      see Regular polytope universal
Van Oss, S. L.      6 208
Vertex, antipodal      249 255
Vertex, of abstract polytope      23
Vertex, of convex polytope      8
Vertex, of map      17
Vertex-figure, of abstract polytope      23
Vertex-figure, of convex polytope      8
Vertex-figure, replacement      210
Vinberg, E. B.      78
wall      40
Weiss, A. I.      xiii 38
Weyl group      75
Weyl group, affine      76
Wills, J. M.      140
Witt, E.      71
Wythoff, construction      11 124 192 207
Wythoff, space      124
Wythoff, space, essential      131
Wythoff, W. A.      11 124
Zigzag      192
Zigzag, $k$-zigzag      196
1 2 3 4
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте