Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Mcmullen P., Schulte E. — Abstract Regular Polytopes
Mcmullen P., Schulte E. — Abstract Regular Polytopes



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Abstract Regular Polytopes

Авторы: Mcmullen P., Schulte E.

Аннотация:

geometrical research, which began with regular polygons and polyhedra. They are highly symmetric combinatorial structures with distinctive geometric, algebraic or topological properties; in many ways more fascinating than traditional regular polytopes and tessellations. The rapid development of the subject in the past 20 years has resulted in a rich new theory, featuring an attractive interplay of mathematical areas, including geometry, combinatorics, group theory and topology. Abstract regular polytopes and their groups provide an appealing new approach to understanding geometric and combinatorial symmetry. This is the first comprehensive up-to-date account of the subject and its ramifications, and meets a critical need for such a text, because no book has been published in this area of classical and modern discrete geometry since Coxeter's Regular Polytopes (1948) and Regular Complex Polytopes (1974). The book should be of interest to researchers and graduate students in discrete geometry, combinatorics and group theory.

Abstract regular polytopes stand at the end of more than two millennia of geometrical research, which began with regular polygons and polyhedra. The rapid development of the subject in the past twenty years has resulted in a rich new theory featuring an attractive interplay of mathematical areas, including geometry, combinatorics, group theory and topology. This is the first comprehensive, up-to-date account of the subject and its ramifications. It meets a critical need for such a text, because no book has been published in this area since Coxeter's "Regular Polytopes" (1948) and "Regular Complex Polytopes" (1974).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2002

Количество страниц: 551

Добавлена в каталог: 23.11.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Polygon, regular      see Regular polygon
Polygon, star-polygon      16
Polyhedron      25
Polyhedron, abstract      25
Polyhedron, convex      8
Polyhedron, infinite      see Apeirohedron
Polyhedron, regular      see Regular polyhedron
Polyhedron, toroidal      18
Polytopal      26
Polytope      22
Polytope, $n$-polytope      25
Polytope, $n$-polytope, abstract      22 25
Polytope, $n$-polytope, convex      7
Polytope, abstract      22-31
Polytope, chiral      38
Polytope, complex regular      293
Polytope, convex      7
Polytope, cubical      268
Polytope, dual      9 28
Polytope, finite      25
Polytope, finite, locally      25
Polytope, flat      109 115-120 275 372 508 514
Polytope, flat, $(k, m)$-flat      109
Polytope, geometric      122
Polytope, group of      27
Polytope, incidence polytope      22
Polytope, infinite      see Apeirotope
Polytope, locally of topological type $X$      361
Polytope, neighbourly      249 268 271 404
Polytope, neighbourly, weakly      267
Polytope, projective      162-165 287 502
Polytope, projective, locally      284 461 463 467 502-509 516
Polytope, regular      see Regular polytope
Polytope, self-dual      28
Polytope, simplicial      268
Polytope, spherical      153
Polytope, spherical, locally      152-162
Polytope, symmetric      123
Polytope, symmetry group of      9 123
Polytope, topological model of      161 367
Polytope, toroidal      154 165-175
Polytope, toroidal, higher      445 450-470
Polytope, toroidal, locally      see Locally toroidal regular polytope
POSET      22
Pre-polytope      43
primitive      291
Proclus      2
Proper central involution      249 255
Pythagoras      2
Quotient      42-49
Quotient, criterion      56
Quotient, lemma      56
Quotient, polytope      44 58-60 272
Quotient, space      149
Rad $M$      74
Radical      298
Rank      22
Rank $\mathcal{P}$      23
Rank, co-rank      23
Rank, of Coxeter group      65
Rank, rank function      23
Rap-map      43
Realization      121-127
Realization, ${}^2{\mathcal{K, G(s)}}$      261-264
Realization, blend      122 125
Realization, centre of      127
Realization, cone      127-140
Realization, cross-polytope realization      135
Realization, degenerate      122
Realization, dimension of      122
Realization, discrete      142
Realization, faithful      122
Realization, linear combination      122 126
Realization, of $n$ -cube      136
Realization, of $\mathcal{L}^{3}_{m;\mathcal{H}}$      484-490
Realization, of ${}^2{\mathcal{K}}$      259-261
Realization, of ${}_{6}\mathcal{T}^{4}_{s,t}$      417
Realization, of ${}_{p}\mathcal{T}^{4}_{(s,0)} (p=3, 4, 5)$      396-398
Realization, of 24-cell      138
Realization, of dodecahedron      137
Realization, of finite regular polytope      127-140
Realization, of hemi-dodecahedron      138
Realization, of icosahedron      137
Realization, of Klein's map      139
Realization, of regular apeirogon      140
Realization, of regular apeirotope      140-147
Realization, of regular polygon      135
Realization, pure      126
Realization, scalar multiple of      122 126
Realization, simplex realization      128
Realization, symmetries of      123
Realization, symmetry group of      123
Realization, translation-free      143
Realization, trivial      122
Realization, vertex-faithful      122
Realization, vertex-set of      121
Rec $K$      142
Reduced sequence      98
Reflexion group      64 290 298
Reflexion group, complex, locally finite      306
Reflexion group, complex, locally unitary      306
Reflexion group, complex, strongly locally finite      327 334
Reflexion group, complex, with involutory generators      298-319
Reflexion group, Coxeter      see Coxeter group
Reflexion group, euclidean, discrete infinite      73 89
Reflexion group, euclidean, finite      71-72 83-94
Reflexion group, euclidean, irreducible      73
Reflexion group, euclidean, preserving figure      see Symmetry group
Reflexion group, euclidean, reducible      75
Reflexion group, unitary, $n$-generator      293
Reflexion group, unitary, blend of      415
Reflexion group, unitary, completely reducible      290
Reflexion group, unitary, finite      290-298 321-327 334-336 339-341 343-344 347-355 357-359
Reflexion group, unitary, imprimitive      291
Reflexion group, unitary, infinite discrete      309-312 327-331 344 350 354-355
Reflexion group, unitary, irreducible      290
Reflexion group, unitary, primitive      291
Reflexion group, unitary, real      294
Reflexion group, unitary, with involutory generators      294-298
Reflexion group, Weyl      see Weyl group
Reflexion in hyperplane, complex      298
Reflexion in hyperplane, complex, unitary      290
Reflexion in hyperplane, real      68
Reflexion in hyperplane, real, euclidean      10
Reflexion in subspace      10 123
Regular      9 31
Regular apeirogon      15 25 27
Regular apeirogon, helical      217 222
Regular apeirogon, linear      217 221
Regular apeirogon, realizations of      140
Regular apeirogon, zigzag      217 222
Regular apeirohedron, in $\mathbb{E}^{3}$      220-236
Regular apeirohedron, in $\mathbb{E}^{3}$, blended      221-223 226-229
Regular apeirohedron, in $\mathbb{E}^{3}$, planar      221
Regular apeirohedron, in $\mathbb{E}^{3}$, pure      223-226 230-236
Regular apeirotope, 4-apeirotopes in $\mathbb{E}^{3}$      236-243
Regular apeirotope, realizations of      140-147
Regular honeycomb, euclidean      15 81 254
Regular honeycomb, euclidean, symmetry group of      67 73
Regular honeycomb, hyperbolic      78 81 204 254 362 384 431-437 445-449
Regular honeycomb, hyperbolic, symmetry group of      67 78
Regular honeycomb, with finite cells      see regular tessellation
Regular map      17-20 179
Regular map, Dyck's map      18 140 399 474
Regular map, Klein's map      18 139 474
Regular map, non-orientable      180
Regular map, of hyperbolic type      179
Regular map, polyhedral models of      140 268
Regular map, polytopal      see Regular polyhedron
Regular map, toroidal      18 364 390-391
Regular polygon, blended      135 222
Regular polygon, convex      3 6 11 27
Regular polygon, helical      217
Regular polygon, in $\mathbb{E}^{3}$      217
Regular polygon, infinite      see Regular apeirogon
Regular polygon, pure      217
Regular polygon, realizations of      135
Regular polygon, skew      217 222
Regular polygon, star-polygon      5 16 135
Regular polyhedron, convex      1-4 11 217-220
Regular polyhedron, Coxeter's $\{4, 2p|4^{p-2}, 2s\}$      256 259 264
Regular polyhedron, Coxeter's $\{4, 2p|4^{[p/2]-1}, 2s\}$      140 184 196 256 260
Regular polyhedron, Coxeter's skew      140 196
Regular polyhedron, history of      1-7
Regular polyhedron, in $\mathbb{E}^{3}$      217-236
Regular polyhedron, infinite      see Regular apeirohedron
Regular polyhedron, Kepler - Poinsot      5 16 212 217-220
Regular polyhedron, on surface      see Regular map
Regular polyhedron, Petrie - Coxeter      18 196
Regular polyhedron, polyhedral models of      140 268
Regular polyhedron, related to a linear group      471-490
Regular polyhedron, skew      7 140 196
Regular polyhedron, star-polyhedron      5 16 212 217-220
Regular polyhedron, toroidal      18 364 390-391
Regular polytope regular polytope, universal      78-83
Regular polytope, abstract      31-38
Regular polytope, abstract, group of      31-38 49-58
Regular polytope, amalgamation of      96-101
Regular polytope, classical      206
Regular polytope, complex regular      293
Regular polytope, convex      7-15 31 208
Regular polytope, convex, symmetry group of      10 67 71
Regular polytope, free extension of      106-109
Regular polytope, higher toroidal      445 450-470
Regular polytope, history of      1-7
Regular polytope, infinite      see Regular apeirotope
Regular polytope, locally of topological type $X$      361
Regular polytope, projective      162-165 287 502
Regular polytope, projective, locally      284 461 463 467 502-509 516
Regular polytope, quotient polytopes of      58-60
Regular polytope, realizations of      see Realization
Regular polytope, related to a linear group      490-501
Regular polytope, self-dual      37
Regular polytope, spherical      153
Regular polytope, spherical, locally      152-162
Regular polytope, star-polytope      16 31 206-217
Regular polytope, symmetries of      see Symmetry group
Regular polytope, topological model of      161 367
Regular polytope, toroidal      see regular toroid
Regular polytope, toroidal, locally      see Locally toroidal
Regular polytope, universal, in class $\langle\mathcal{P_{1},P_{2}}\rangle$      96-101
Regular polytope, universal, of type $\{p_{1}, ...,p_{n-1}\}$      78-83
Regular polytope, universal, with given facet and vertex-figure      97
Regular solids      2 11
Regular tessellation, euclidean      15 81 254
Regular tessellation, euclidean, planar      2 15
Regular tessellation, euclidean, symmetry group of      67 73
Regular tessellation, hyperbolic      81
Regular tessellation, hyperbolic, symmetry group of      67 78
Regular tessellation, on space-form      151
Regular tessellation, on space-form, euclidean      165-177
Regular tessellation, on space-form, hyperbolic      178-182
Regular tessellation, on space-form, spherical      162-165
Regular tessellation, on surface      see Regular map
Regular tessellation, on surface, polytopal      see Regular polyhedron
Regular tessellation, on torus      see Regular toroid
Regular tessellation, spherical      162-165
Regular tessellation, with finite or infinite cells      see Regular honeycomb
Regular toroid      154
Regular toroid, cubic      165-169 172-175 258 269
Regular toroid, on 2-torus      18 364 390-391
Regular toroid, other      170-175
Regular, combinatorially      11 31 152
Regular, directly      38
Regular, geometrically      156
Regular, semi-regular      15
Reinhardt, C.      17
Representation, character norm      131
Representation, character of      131
Representation, complex conjugate      130
Representation, contragredient      68 302
Representation, degree of      129 133
Representation, isomorphic      131
Representation, of Coxeter groups      64-70
Ridge of abstract polytope      23
Ridge of convex polytope      8
Ronan, M. A.      21
Root      75
Root, lattice      75
Root, lattice, $D_{n}$      167 170
Root, system      75
Schl$\ddot{a}$fli determinant      208 306 314
Schl$\ddot{a}$fli symbol of abstract polytope      30
Schl$\ddot{a}$fli symbol of complex regular polytope      293
Schl$\ddot{a}$fli symbol of convex polytope      11
Schl$\ddot{a}$fli symbol of map      17
Schl$\ddot{a}$fli symbol of star-polytope      207
Schl$\ddot{a}$fli, L.      6 16 85
Schulte, E.      xiii 21
Section      9 23
Section, $k$-section      23
Section, proper      23
Self-Petrie      193
Semi-regular      15
Sggi      35
Shephard, G. C.      289
simplex      8 11
Simplex, adjacent      39
Simplex, base      40
Simplex, dissection      432 505
Simplex, type of      39
Simplicial complex of chains      see Order complex
Simplicial complex of chambers      see Chamber complex
Skewing operation      199
Sloane, N. J. A.      170
Sommerville, D. M. Y.      86
Space, complex projective      291
Space, Euclidean      148
Space, hyperbolic      148
Space, real elliptic      150
Space, real projective      149
Space, spherical      148
Space, unitary      290
Space-form      148-152
Space-form, affinely equivalent      151
Space-form, euclidean      149 175-177
Space-form, hyperbolic      149 178-182
Space-form, isometric      150
Space-form, isometry type of      150
Space-form, orientable      150
Space-form, similar      151
Space-form, spherical      149 162-165
Space-form, tessellation on      151
Space-form, volume of      151
Star      113
Starry      207 213
Stringham, W. I.      6
Subfacet      23
Supporting hyperplane      8
Symmetries of geometric polytope      123
Symmetry group, of polytope, complex regular      293
Symmetry group, of polytope, convex regular      9
Symmetry group, of polytope, geometric      123
Symmetry group, of realization      123
Symmetry group, of regular 4-apeirotope in $\mathbb{E}^{3}$      236-243
Symmetry group, of regular honeycomb or tessellation euclidean      67 73
Symmetry group, of regular honeycomb or tessellation euclidean, hyperbolic      67 78 431-432 445-449
Symmetry group, of regular honeycomb or tessellation euclidean, on space-form      156
Symmetry group, of regular polyhedron in $mathbb{E}^{3}$      217-220 226-236
Tessellation, chiral      178
1 2 3 4
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте