Авторизация
Поиск по указателям
Arratia R., Barbour A.D., Tavare S. — Logarithmic Combinatorial Structures: A Probabilistic Approach
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Logarithmic Combinatorial Structures: A Probabilistic Approach
Авторы: Arratia R., Barbour A.D., Tavare S.
Аннотация: The elements of many classical combinatorial structures can be naturally decomposed into components. Permutations can be decomposed into cycles, polynomials over a finite field into irreducible factors, mappings into connected components. In all of these examples, and in many more, there are strong similarities between the numbers of components of different sizes that are found in the decompositions of "typical" elements of large size. For instance, the total number of components grows logarithmically with the size of the element, and the size of the largest component is an appreciable fraction of the whole.
This book explains the similarities in asymptotic behavior as the result of two basic properties shared by the structures: the conditioning relation and the logarithmic condition. The discussion is conducted in the language of probability, enabling the theory to be developed under rather general and explicit conditions; for the finer conclusions, Stein's method emerges as the key ingredient. The book is thus of particular interest to graduate students and researchers in both combinatorics and probability theory.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 2003
Количество страниц: 363
Добавлена в каталог: 18.11.2009
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
156
156
25
237
225
225
168
2 11 35
66 149 155
1 11 35
155
226 231
21
226 231
209 226 231
15 67 226
60
153
153
78
23 108
23 71 113
107
153
153
107
156
156
243
332
2 18 29 35
35 149
23
23
177
36 52
25
23 117
21
154
82
86 282
86
188
153
154
188
296
225
10
18
15 35
126
69 149
201
154
154
216
78
19
11
218
80
85
21
21
126
168
14 26 28 35 125
126
153
188
112 155
71
71
166
167
197
167
256
129 170 318
133
154
154
66
153
153
153
155
154
252
216
214
168
213
252
288
190
187 324
310
310
206
45 200
73
121
120
11
153
153
191
153
153
22
237
180
104
45 200
154
155
72 177
72 177
22
153
153
185
3 65 125
70
155
219
220
153
155
155
125
19
Additive functions 200—224
Additive semigroup, arithmetic 45 200—224
Additive semigroup, Erdos — Wintner theorem 203
Additive semigroup, Erdos — Wintner theorem, rate 209
Additive semigroup, Kubilius Main Theorem 214
Additive semigroup, Kubilius Main Theorem, functional 216
Additive semigroup, Kubilius Main Theorem, functional rate 217
Additive semigroup, regular variation, convergence 220
Additive semigroup, regular variation, functional rate 221
Additive semigroup, slow variation, convergence 214
Additive semigroup, slow variation, functional rate 217
Age-ordering 24
Aldous, D.J. 40 43 175
Approximation of by , Kolmogorov 282
Approximation of by , Wasserstein 282
Approximation of by in distribution 277—282
Approximation of by , Kolmogorov 280
Approximation of by , Wasserstein 279
Approximation of by in distribution 282—283
Approximation of by , 282
Approximation of by , Kolmogorov 276
Approximation of by , total variation 272
Approximation of by , Kolmogorov, any 274
Approximation of by , Wasserstein, any 277
Approximation of by in distribution 267—277
Approximation of by , interval probabilities 292
Approximation of by , point probabilities 288—297
Approximation of by , point probabilities, from interval probabilities 289
Approximation of by , point probabilities, large 294
Approximation of by , point probabilities, main theorem 293
Approximation of by , point probabilities, ratios 296
Approximation of by , point probabilities, uniform bound 294
Approximation of by , total variation, large 267
Approximation of by , Wasserstein, large 268
Approximation of by in distribution 267—282
Approximation of by , point probabilities 285—299
Approximation of by in distribution 282—283
Approximation of by , point probabilities 297—299
Approximation, Brownian 171—175
Approximation, Brownian, group order 199
Approximation, discrete 149
Approximation, global 71 97
Approximation, global, all components 168
Approximation, global, large components 167
Approximation, global, small components 165
Approximation, local 71 151
Approximation, local, large components 169
Approximation, local, small components 169
Approximation, normal 187
Approximation, normal, group order 199
Approximation, Poisson 186 191 328
Approximation, Poisson-Dirichlet 175—186
Approximation, total variation 226
Arratia, R. 3 7 16 22 23 26 29—31 43 46 47 100 103 104 115 123 125 141 143 166 167 170 171 173—175 187 189 191 199 202
Assemblies 45—46 48—49 54 59 60 70—73 133 139—140
Assemblies, logarithmic 51 70
Asymptotic independence 66 71
Bach, E. 7 31
Balakrishnan, N. 61
Barban, M.B. 29
Barbour, A.D. 7 16 17 20 21 23 26 43 67 100 123 125 166 167 170 173—175 186 187 189—191 199 202 225 309
Barouch, E. 79
Barton, D. 14
Bell numbers 37
Bell, J.P. 134
Bender, E.A. 134
Bergeron, F. 5
Bernoulli, random variables 19 55 58 145 156 186 236
Bernoulli, representation 19 20 101
Best, M.R. 25
Beta random variables 107 119 120 122
Beurling generalized primes 45
Beurling, A. 45
Billingsley, P. 7 28 30 31
Binomial random variables 51
Bollobas, B. 38 39 176
Bovey, J.D. 25
Brenti's representation 187
Brenti, F. 187
Brownian motion 20 216
Buchstab's function 22 87—89
Buchstab, A.A. 7 22
Cameron, P.J. 134
Car, M. 163 164 186 302
Card shuffling 44
Cayley, A. 41
Central limit theorem 103
Central limit theorem, functional 20 30 103 171—175 216
Central limit theorem, permutations 19
Central limit theorem, prime factorizations 30
Chen, L.H.Y. 73 225
Chistyakov, V.P. 4
Coagulation 63—64
Coloring 56—57
Completely additive 201
Component spectrum 1 35
Components, fixed number of 101 134
Components, functional limit theorem 216
Components, large 66 71—73 149—151 167 202
Components, largest 130
Components, number of 186—199
Components, small 66 71—73 96—100 151—152 165 202
Components, smallest 128
Conditioning Relation 2 15 26 32 34 48 69 77 97 111—113 125 149 155
Conditioning Relation, general statement 35 65
Conditions, G, A, D, B 156
Conditions, general 155—157
Conventions, general 155
Coupling 181—186
Coupling, Feller 100 181
Coupling, operational time 182
Coupling, Poisson process 181 182
Csoergo, M. 175 217
Daley, D.J. 121
David, F.N. 14
de Montmort, P.-R. 9
Decomposable 35
Delange, H. 29
DeLaurentis, J.M. 20 25 171
Derangement 13
Devroye, L. 61
Diaconis, P. 4 17 39 44 61
Diamond, H.G. 45
Dickman's function p 22 85
Dickman, K. 7 22 85
Dissected representation 153 155 163 167
Distance, bounded Wasserstein 174 187 209 226 231
Distance, Kolmogorov 226 231
Distance, total variation 15 67—70 226
Distance, Wasserstein 185 226 231
Distinct, component sizes 57
Distinct, parts of a multiset 57
Divisor function 158
Donnelly, P. 7 31 103 119 171
Dudley, R.M. 67 207
Elliott, P.D.T.A. 7 29
Engen, S. 107 119
Erdos — Turan theorem, functional rate 199
Erdos — Turan theorem, rate 199
Erdos — Wintner theorem 203
Erdos, P. 7 25 30 115 199
Ewens sampling formula 3 11 60—64 66 77—124 149 155 168 177 181 186 199 202
Ewens, W.J. 61 96
Exponential random variables 118 122
Factorial, falling 11
Factorial, moments 12 59 96
Factorial, rising 19
Feller coupling 16—18 100 181
Feller, W. 16 20 100
Fienberg, S.E. 61
Finite fields, random nonsingular matrices 44
Finite fields, random polynomials 43
Flajolet, P. 5 40 43 44 47
Foata, D. 5 46
Freedman, D. 4
Fristedt, B. 4 37
Functional central limit theorem 30
Functional central limit theorem, general 171—175
Functional central limit theorem, permutations 20 103
Functional central limit theorem, prime factorizations 30
G(n) 200
GEM, density 107 119
GEM, distribution 25 31 107 117—124
GEM, process 117—124
Generalized primes 45
Реклама