Авторизация
Поиск по указателям
Arratia R., Barbour A.D., Tavare S. — Logarithmic Combinatorial Structures: A Probabilistic Approach
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Logarithmic Combinatorial Structures: A Probabilistic Approach
Авторы: Arratia R., Barbour A.D., Tavare S.
Аннотация: The elements of many classical combinatorial structures can be naturally decomposed into components. Permutations can be decomposed into cycles, polynomials over a finite field into irreducible factors, mappings into connected components. In all of these examples, and in many more, there are strong similarities between the numbers of components of different sizes that are found in the decompositions of "typical" elements of large size. For instance, the total number of components grows logarithmically with the size of the element, and the size of the largest component is an appreciable fraction of the whole.
This book explains the similarities in asymptotic behavior as the result of two basic properties shared by the structures: the conditioning relation and the logarithmic condition. The discussion is conducted in the language of probability, enabling the theory to be developed under rather general and explicit conditions; for the finer conclusions, Stein's method emerges as the key ingredient. The book is thus of particular interest to graduate students and researchers in both combinatorics and probability theory.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 2003
Количество страниц: 363
Добавлена в каталог: 18.11.2009
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Generating function 19
Generator approach 226
Geometric random variables 28
GF(q) 43
Gnedin, A.V. 119 176
Goh, W.M.Y. 44 171 187
Golomb, S.W. 23
Goncharov, V.L. 12 14 19 22 186
Gordon, L. 78 164
Goulden, I.P. 5
Gourdon, X. 5
Griffiths, R.C. 85 107 118
Grimmett, G. 7 31
h(n+1) 21
Hald, A. 10
Hall, P.G. 20 186
Hambly, B.M. 26
Hansen, J.C. 4 43 44 103 131 143 171 175 186
Hansen, M.H. 78
Harary, F. 42
Hardy, G.H. 32 36
Harmonic number h(n + 1) 21 81
Hat-check problem 10
Hensley, D. 85
Hildebrand, A. 85
Hirth, U.M. 192
Holst, L. 4 67 190 309
Hoppe, F.M. 119
Hurwitz, W.N. 78
Hwang, H.-K. 5 19 58 133 187 194
Ignatov, T. 110 119
Immigration-death process 227—229
Indicator notation 11
Infinitely divisible 151 154 156 211 236 241
Infinitesimal generator 227 232
Integer partitions 36
Invariance principle, discrete 149
Jackson, D.M. 5
James, G. 56 57
Janson, S. 67 176 190 309
Jaworski, J. 175
Johnson, N.S. 61
Joyal, A. 5 46 47
Joyce, P. 119
Kac, M. 30
Katz, L. 39
Kaufman, G.M. 79
Keevash, P. 26
Kelly, F.P. 4 63
Kerber, A. 56 57
Kerov, S. 119 176
Kingman, J.F.C. 23 108 114 117 175
Knopfmacher, J. 5 45 200
Knuth, D.E. 7 31 32
Kolchin, V.F. 4 14 19 20 22 25 40 43 186
Kolmogorov, distance 226 231
Kolmogorov, three series criterion 203
Kotz, S. 61
Kubilius, fundamental lemma 29
Kubilius, J. 7 29 30
Kurtz, T.G. 103 171 174
Labelle, G. 5
Lagarias, J.C. 45
Landau's formula 29 101 132
Landau, E. 29 101 132
Large deviations 164
Large deviations, fixed number of components 101—103 132—137
Large deviations, number of components 194—199
Large deviations, smallest components 128—130
Large deviations, smallest cycles 22
Leroux, P. 5
Limit distribution 14
Limit theorem, central 19 30 103
Limit theorem, functional 20 30 71—73 103 171—175
Limit theorem, local 19 71 91 101 111 113 127 130 151 152 285 287
Limiting random variable, 80—85 121 126 151 152 230 277—282
Limiting random variable, , density 82 108 122 152 285 297—298
Limiting random variable, , distribution 277—282
Limiting random variable, 85—89 123 127 282—283
Limiting random variable, , density 86 123 287 297—298
Limiting random variable, , distribution 282—283
Lindvall, T. 67
Lloyd, S.P. 4 19 21 22 26
LLT 127—134 138—147 151 176 285 287 298
LLT, definition 127
LLT, sharpening 298
Local limit theorem 71 91 101 111 113 127 130 151 152 285 287
Local limit theorem, permutations 19
Loeve, M. 203 208 214 216
Logarithmic class 51 97 149—160
Logarithmic Condition 2 125—147 152 155
Logarithmic Condition, general statement 65
Loh, W.-L. 225
Lynch, W.C. 61 62
Mahmoud, H.M. 61
Makov, U.E. 61
Markov process 227—229
McCloskey, J.W. 107 119
McGrath, M. 44
Measures of smallness 153—154
Meir, A. 40
Mertens' theorem 34
Metropolis, N. 44
Midzuno, H. 78
Moon, J.W. 40 41
Moser, L. 19 37
Multisets 36 46—47 49—50 55 60 70—73 133 140—143 163 201 222
Multisets, logarithmic 53 70
Mutafciev, L.R. 40 43 175 186
Necklaces 43
Negative binomial, random variables 49 156
Nicolas, J.-L. 25 200
Nijenhuis, A. 36—38 42
Normal approximation 187
O'Connell, N. 26
Odlyzko, A. 5 40 224
Otter, R. 42
p(n) 36 52
Palmer, E.M. 42
Panario, D. 5 22
Partitions, integer 36
Partitions, set 37
Patil, G.P. 119
Pavlov, A.I. 19 25 186
Pavlov, Y.L. 43
Perman, M. 119
permutations 9—27 38 60 95
Permutations, age-ordering 24—25
Permutations, canonical cycle notation 10
Permutations, Cauchy’s formula 11 32 102
Permutations, cycle type 11 60 96
Permutations, distinct cycle lengths 21
Permutations, functional central limit theorem 20 103
Permutations, group order 25 115 199—200
Permutations, limit distribution 14
Permutations, local limit theorem 19
Permutations, longest cycles 22—24 108—115
Permutations, moments 11
Permutations, number of cycles 18 61 100—103
Permutations, number of cycles, Poisson approximation 20
Permutations, ordered cycles 106—107
Permutations, short cycles 96
Permutations, shortest cycles 21—22 100 104—106
Permutations, size-biased 119
Permutations, total variation distance 15—16
Philipp, W. 30
Pitman, J.W. 4 17 37 39 40 43 44 61 119 120 124
Pittel, B.G. 3 4 20 25 37 171
Plouffe, S. 42
Point probabilities, approximation 285—299
Point probabilities, bounds 239—265
Point probabilities, bounds on differences 247—265
Point probabilities, first bound 241
Point probabilities, large argument 243—247
Point probabilities, second bound 243
Point probabilities, successive differences, first bound 249
Point probabilities, successive differences, first uniform bound 253
Point probabilities, successive differences, second bound 256
Point probabilities, successive differences, second uniform bound 262
Point probabilities, successive differences, simplified bound 264
Poisson approximation 20 73—75 186 191 328
Poisson compound 75 151 225—237
Poisson process 14 117—124 229 232 233
Poisson process, coupling 181 182
Poisson process, scale invariant 120—124 180 282
Poisson process, spacings 119
Poisson process, translation invariant 121
Poisson random variables 48 77 126 155 156 225 324
Poisson — Dirichlet approximation 175—186
Poisson — Dirichlet density 23 113
Poisson — Dirichlet distribution 23 115 117—124
Poisson — Dirichlet limit 31 66 73
Poisson — Dirichlet process 73 117—124 192
Population genetics 61
Prime factorizations 27—31
Prime factorizations, conditioning relation 32—34
Prime factorizations, generalized 45
Prime factorizations, Mertens’ theorem 34
Prime factorizations, number of factors 29 201
Prime factorizations, number of factors, asymptotics 29
Prime factorizations, number of factors, central limit theorem 30
Prime factorizations, Poisson — Dirichlet 31
Prime factorizations, size-biased permutation 31
Prime factorizations, total variation distance 29
Prime factors, largest 31
Prime factors, smallest 31
Pure death process 227—229
R(n,c) 46
Rademacher, H. 36
Ramanujan, S. 32 36
Random graphs 38
Random mapping patterns 40 53 186
Random mappings 39 164 186
Random polynomials 43 44 53 163 165 186 200
refinement 53—56
Regular variation 218
Renyi, A. 16 20 30
Residual allocation 119
Revesz, P. 175 217
Richmond, L.B. 5 22 134
Riddell, R.J. 46
Rising factorial 19
Rota, G.-C. 44
S 230
S(N) 154
Sachkov, V.N. 37
Samuels, S.M. 61
Scheffe, H. 115 131
Schmutz, E. 44 143 171 175 187
Schwenk, A.J. 42
Sedgewick, R. 5
Selberg — Delange method 29
Selberg, A. 29
selections 47—48 50—51 55 60 70—73 133 143
Selections, logarithmic 53 70
Set partitions 37
Sevast'yanov, B.A. 4
Shepp, L.A. 4 19 21 22 26
Shmidt, A.A. 23 110 120
Singularity theory 224
Size-biased permutation, cycle lengths of permutations 24
Size-biased permutation, prime factorizations 31
Size-biasing 78—80 83 88 90 91 97 119 139 141 143 144 151 207 223 247 330
Size-biasing, equation 80 125
Size-biasing, Stein analogue 236
Sloane, N.J.A. 42
Slow variation 211
Soria, M. 5 43 44 47
Species 45
Split-merge 119
Stam, A.J. 4
Stanley, R.P. 5
Stark, D. 3 26 29 58 166 170
Stein equation 227
Stein Equation for 231
Stein Equation for 282
Stein Equation for 225 270 291
Stein Operator for 230
Stein Operator for 225 234 270
Stein — Chen method 73—75 190 328
Stein's method 73—75 144—147 151 152 225—237 247
Stein's method for 230—234 277—282 325
Stein's method for 225—230 269—277
Stein, C. 25 73 225
Stepanov, V.E. 40 186
Stirling numbers 18
Stirling numbers, asymptotics 19
Stong, R. 44
Strongly additive 201
subsets 47
Taillie, C. 119
Tavare, S. 3 7 16 21—23 26 43 46 47 61 100 103 104 115 118 123 125 141 143 166 167 170 171 173—175 187 189 191 199 202
Tenenbaum, G. 7 22 27 29 31 85 158
Tilting 57—64 160—163 194—199
Total variation, approximation 226
Total variation, asymptotics 170
Trabb Pardo, L. 7 31 32
Trees 40 41
Trees, search 61—63
Turan, P. 7 25 115 199
Uniform random variables 122
Uniform structures 45
Van de Lune, J. 85
van Lint, J.H. 44 46
Vere-Jones, D. 121
Vershik, A.M. 7 23 110 120
Vervaat, W. 82 85
Vinogradov, A.I. 29
Wasserstein distance 185
Wasserstein distance, bounded 174 187 209
Wattel, E. 85
Watterson, G.A. 4 85 96 109 110 175
Wheeler, F.S. 85
Whittle, P. 4 63
Wieand, K.L. 26
Wilf, H.S. 21 36—38 42 46
Wilson, R.M. 44 46
Wreath products 55 56
Wright, E.M. 36
Wyman, M. 19 37
Yannaros, N. 192
Yor, M. 119 120 124
Zhang, W.-B. 5 45 201 202 211 222 224
Реклама