Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Arratia R., Barbour A.D., Tavare S. — Logarithmic Combinatorial Structures: A Probabilistic Approach
Arratia R., Barbour A.D., Tavare S. — Logarithmic Combinatorial Structures: A Probabilistic Approach



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Logarithmic Combinatorial Structures: A Probabilistic Approach

Авторы: Arratia R., Barbour A.D., Tavare S.

Аннотация:

The elements of many classical combinatorial structures can be naturally decomposed into components. Permutations can be decomposed into cycles, polynomials over a finite field into irreducible factors, mappings into connected components. In all of these examples, and in many more, there are strong similarities between the numbers of components of different sizes that are found in the decompositions of "typical" elements of large size. For instance, the total number of components grows logarithmically with the size of the element, and the size of the largest component is an appreciable fraction of the whole.

This book explains the similarities in asymptotic behavior as the result of two basic properties shared by the structures: the conditioning relation and the logarithmic condition. The discussion is conducted in the language of probability, enabling the theory to be developed under rather general and explicit conditions; for the finer conclusions, Stein's method emerges as the key ingredient. The book is thus of particular interest to graduate students and researchers in both combinatorics and probability theory.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2003

Количество страниц: 363

Добавлена в каталог: 18.11.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Generating function      19
Generator approach      226
Geometric random variables      28
GF(q)      43
Gnedin, A.V.      119 176
Goh, W.M.Y.      44 171 187
Golomb, S.W.      23
Goncharov, V.L.      12 14 19 22 186
Gordon, L.      78 164
Goulden, I.P.      5
Gourdon, X.      5
Griffiths, R.C.      85 107 118
Grimmett, G.      7 31
h(n+1)      21
Hald, A.      10
Hall, P.G.      20 186
Hambly, B.M.      26
Hansen, J.C.      4 43 44 103 131 143 171 175 186
Hansen, M.H.      78
Harary, F.      42
Hardy, G.H.      32 36
Harmonic number h(n + 1)      21 81
Hat-check problem      10
Hensley, D.      85
Hildebrand, A.      85
Hirth, U.M.      192
Holst, L.      4 67 190 309
Hoppe, F.M.      119
Hurwitz, W.N.      78
Hwang, H.-K.      5 19 58 133 187 194
Ignatov, T.      110 119
Immigration-death process      227—229
Indicator notation      11
Infinitely divisible      151 154 156 211 236 241
Infinitesimal generator      227 232
Integer partitions      36
Invariance principle, discrete      149
Jackson, D.M.      5
James, G.      56 57
Janson, S.      67 176 190 309
Jaworski, J.      175
Johnson, N.S.      61
Joyal, A.      5 46 47
Joyce, P.      119
Kac, M.      30
Katz, L.      39
Kaufman, G.M.      79
Keevash, P.      26
Kelly, F.P.      4 63
Kerber, A.      56 57
Kerov, S.      119 176
Kingman, J.F.C.      23 108 114 117 175
Knopfmacher, J.      5 45 200
Knuth, D.E.      7 31 32
Kolchin, V.F.      4 14 19 20 22 25 40 43 186
Kolmogorov, distance      226 231
Kolmogorov, three series criterion      203
Kotz, S.      61
Kubilius, fundamental lemma      29
Kubilius, J.      7 29 30
Kurtz, T.G.      103 171 174
Labelle, G.      5
Lagarias, J.C.      45
Landau's formula      29 101 132
Landau, E.      29 101 132
Large deviations      164
Large deviations, fixed number of components      101—103 132—137
Large deviations, number of components      194—199
Large deviations, smallest components      128—130
Large deviations, smallest cycles      22
Leroux, P.      5
Limit distribution      14
Limit theorem, central      19 30 103
Limit theorem, functional      20 30 71—73 103 171—175
Limit theorem, local      19 71 91 101 111 113 127 130 151 152 285 287
Limiting random variable, $X_\theta$      80—85 121 126 151 152 230 277—282
Limiting random variable, $X_\theta$, density $p_\theta$      82 108 122 152 285 297—298
Limiting random variable, $X_\theta$, distribution $P_\theta$      277—282
Limiting random variable, $X_\theta^{(\alpha)}$      85—89 123 127 282—283
Limiting random variable, $X_\theta^{(\alpha)}$, density $p_\theta^{(\alpha)}$      86 123 287 297—298
Limiting random variable, $X_\theta^{(\alpha)}$, distribution $P_\theta^{(\alpha)}$      282—283
Lindvall, T.      67
Lloyd, S.P.      4 19 21 22 26
LLT      127—134 138—147 151 176 285 287 298
LLT, definition      127
LLT, sharpening      298
Local limit theorem      71 91 101 111 113 127 130 151 152 285 287
Local limit theorem, permutations      19
Loeve, M.      203 208 214 216
Logarithmic class      51 97 149—160
Logarithmic Condition      2 125—147 152 155
Logarithmic Condition, general statement      65
Loh, W.-L.      225
Lynch, W.C.      61 62
Mahmoud, H.M.      61
Makov, U.E.      61
Markov process      227—229
McCloskey, J.W.      107 119
McGrath, M.      44
Measures of smallness      153—154
Meir, A.      40
Mertens' theorem      34
Metropolis, N.      44
Midzuno, H.      78
Moon, J.W.      40 41
Moser, L.      19 37
Multisets      36 46—47 49—50 55 60 70—73 133 140—143 163 201 222
Multisets, logarithmic      53 70
Mutafciev, L.R.      40 43 175 186
Necklaces      43
Negative binomial, random variables      49 156
Nicolas, J.-L.      25 200
Nijenhuis, A.      36—38 42
Normal approximation      187
O'Connell, N.      26
Odlyzko, A.      5 40 224
Otter, R.      42
p(n)      36 52
Palmer, E.M.      42
Panario, D.      5 22
Partitions, integer      36
Partitions, set      37
Patil, G.P.      119
Pavlov, A.I.      19 25 186
Pavlov, Y.L.      43
Perman, M.      119
permutations      9—27 38 60 95
Permutations, age-ordering      24—25
Permutations, canonical cycle notation      10
Permutations, Cauchy’s formula      11 32 102
Permutations, cycle type      11 60 96
Permutations, distinct cycle lengths      21
Permutations, functional central limit theorem      20 103
Permutations, group order      25 115 199—200
Permutations, limit distribution      14
Permutations, local limit theorem      19
Permutations, longest cycles      22—24 108—115
Permutations, moments      11
Permutations, number of cycles      18 61 100—103
Permutations, number of cycles, Poisson approximation      20
Permutations, ordered cycles      106—107
Permutations, short cycles      96
Permutations, shortest cycles      21—22 100 104—106
Permutations, size-biased      119
Permutations, total variation distance      15—16
Philipp, W.      30
Pitman, J.W.      4 17 37 39 40 43 44 61 119 120 124
Pittel, B.G.      3 4 20 25 37 171
Plouffe, S.      42
Point probabilities, approximation      285—299
Point probabilities, bounds      239—265
Point probabilities, bounds on differences      247—265
Point probabilities, first bound      241
Point probabilities, large argument      243—247
Point probabilities, second bound      243
Point probabilities, successive differences, first bound      249
Point probabilities, successive differences, first uniform bound      253
Point probabilities, successive differences, second bound      256
Point probabilities, successive differences, second uniform bound      262
Point probabilities, successive differences, simplified bound      264
Poisson approximation      20 73—75 186 191 328
Poisson compound      75 151 225—237
Poisson process      14 117—124 229 232 233
Poisson process, coupling      181 182
Poisson process, scale invariant      120—124 180 282
Poisson process, spacings      119
Poisson process, translation invariant      121
Poisson random variables      48 77 126 155 156 225 324
Poisson — Dirichlet approximation      175—186
Poisson — Dirichlet density      23 113
Poisson — Dirichlet distribution $(L_1, L_2, ...)$      23 115 117—124
Poisson — Dirichlet limit      31 66 73
Poisson — Dirichlet process      73 117—124 192
Population genetics      61
Prime factorizations      27—31
Prime factorizations, conditioning relation      32—34
Prime factorizations, generalized      45
Prime factorizations, Mertens’ theorem      34
Prime factorizations, number of factors      29 201
Prime factorizations, number of factors, asymptotics      29
Prime factorizations, number of factors, central limit theorem      30
Prime factorizations, Poisson — Dirichlet      31
Prime factorizations, size-biased permutation      31
Prime factorizations, total variation distance      29
Prime factors, largest      31
Prime factors, smallest      31
Pure death process      227—229
R(n,c)      46
Rademacher, H.      36
Ramanujan, S.      32 36
Random graphs      38
Random mapping patterns      40 53 186
Random mappings      39 164 186
Random polynomials      43 44 53 163 165 186 200
refinement      53—56
Regular variation      218
Renyi, A.      16 20 30
Residual allocation      119
Revesz, P.      175 217
Richmond, L.B.      5 22 134
Riddell, R.J.      46
Rising factorial      19
Rota, G.-C.      44
S      230
S(N)      154
Sachkov, V.N.      37
Samuels, S.M.      61
Scheffe, H.      115 131
Schmutz, E.      44 143 171 175 187
Schwenk, A.J.      42
Sedgewick, R.      5
Selberg — Delange method      29
Selberg, A.      29
selections      47—48 50—51 55 60 70—73 133 143
Selections, logarithmic      53 70
Set partitions      37
Sevast'yanov, B.A.      4
Shepp, L.A.      4 19 21 22 26
Shmidt, A.A.      23 110 120
Singularity theory      224
Size-biased permutation, cycle lengths of permutations      24
Size-biased permutation, prime factorizations      31
Size-biasing      78—80 83 88 90 91 97 119 139 141 143 144 151 207 223 247 330
Size-biasing, equation      80 125
Size-biasing, Stein analogue      236
Sloane, N.J.A.      42
Slow variation      211
Soria, M.      5 43 44 47
Species      45
Split-merge      119
Stam, A.J.      4
Stanley, R.P.      5
Stark, D.      3 26 29 58 166 170
Stein equation      227
Stein Equation for $P_\theta$      231
Stein Equation for $P_\theta^{(\alpha)}$      282
Stein Equation for $T_{0m}(Z^\ast)$      225 270 291
Stein Operator for $P_\theta$      230
Stein Operator for $T_{0m}(Z^\ast)$      225 234 270
Stein — Chen method      73—75 190 328
Stein's method      73—75 144—147 151 152 225—237 247
Stein's method for $P_\theta$      230—234 277—282 325
Stein's method for $T_{0m}(Z^\ast)$      225—230 269—277
Stein, C.      25 73 225
Stepanov, V.E.      40 186
Stirling numbers      18
Stirling numbers, asymptotics      19
Stong, R.      44
Strongly additive      201
subsets      47
Taillie, C.      119
Tavare, S.      3 7 16 21—23 26 43 46 47 61 100 103 104 115 118 123 125 141 143 166 167 170 171 173—175 187 189 191 199 202
Tenenbaum, G.      7 22 27 29 31 85 158
Tilting      57—64 160—163 194—199
Total variation, approximation      226
Total variation, asymptotics      170
Trabb Pardo, L.      7 31 32
Trees      40 41
Trees, search      61—63
Turan, P.      7 25 115 199
Uniform random variables      122
Uniform structures      45
Van de Lune, J.      85
van Lint, J.H.      44 46
Vere-Jones, D.      121
Vershik, A.M.      7 23 110 120
Vervaat, W.      82 85
Vinogradov, A.I.      29
Wasserstein distance      185
Wasserstein distance, bounded      174 187 209
Wattel, E.      85
Watterson, G.A.      4 85 96 109 110 175
Wheeler, F.S.      85
Whittle, P.      4 63
Wieand, K.L.      26
Wilf, H.S.      21 36—38 42 46
Wilson, R.M.      44 46
Wreath products      55 56
Wright, E.M.      36
Wyman, M.      19 37
Yannaros, N.      192
Yor, M.      119 120 124
Zhang, W.-B.      5 45 201 202 211 222 224
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте