Àâòîðèçàöèÿ 
		         
		        
					
 
		          
		        
			          
		        
			        Ïîèñê ïî óêàçàòåëÿì 
		         
		        
			        
					 
		          
		        
			          
			
			         
       		 
			          
                
                    
                        
                     
                  
		
			          
		        
			          
		
            
	     
	    
	    
            
		
                    Slater J.C. — Introduction To Chemical Physics 
                  
                
                    
                        
                            
                                
                                    Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå    Íàøëè îïå÷àòêó? 
 
                                
                                    Íàçâàíèå:   Introduction To Chemical PhysicsÀâòîð:   Slater J.C.  Àííîòàöèÿ:  It is probably unfortunate that physics and chemistry over were separated. Chemistry is the science of atoms and of the way they com bine. Physics deals with the interatomic forces and with the large-scale properties of matter resulting from those forces. So long as chemistry was largely empirical and nonmathematical, and physics had not learned how to treat small-scale atomic forces, the two sciences seemed widely separated. But with statistical mechanics and the kinetic theory on the one hand and physical chemistry on the other, the two sciences began to come together. Now that statistical mechanics has led to quantum theory and wave mechanics, with its explanations of atomic interactions, there is really nothing separating them any more. A few years ago, though their ideas were close together, their experimental methods were still quite different chemists dealt with things in test tubes, making solutions, pre cipitating and filtering and evaporating, while physicists measured every thing with galvanometers and spectroscopes. But even this distinction has disappeared, with more and more physical apparatus finding its way into chemical laboratories. A wide range of study is common to both subjects. The sooner we realize this the better. For want of abetter name, since Physical Chemistry is already preempted, we may call this common field Chemical Physics. It is an overlapping field in which both physicists and chemists should be trained. There 4 seems no valid reason why their training in it should differ. This book is an attempt to incorporate some of the material of this common field in a unified presentation. What should be included in a discussion of chemical physics Logi cally, we should start with fundamental principles. We should begin with mechanics, then present electromagnetic theory, and should work up to wave mechanics and quantum theory.
ßçûê:  Ðóáðèêà:  Ôèçèêà /Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ:  Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö ed2k:   ed2k stats Ãîä èçäàíèÿ:  1939Êîëè÷åñòâî ñòðàíèö:  521Äîáàâëåíà â êàòàëîã:  18.08.2009Îïåðàöèè:  Ïîëîæèòü íà ïîëêó  |
	 
	Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà  | Ñêîïèðîâàòü ID 
                                 
                             
                        
                     
                 
                                                                
			          
                
                    Ïðåäìåòíûé óêàçàòåëü 
                  
                
                    
                        Elastic vibrations of solids, and specific heat 222—255 Electron affinity 338 Electron gas, and Fermi — Dirac statistics 81 Electron gas, and metallic structure 475—484 Electron volt, numerical value 132—133 318 Electrons and atomic structure 337—351 Electrons and atomic structure and structure of metals 472—501 Electrostatics, and field in metal 472—489 Electrostatics, and interatomic forces 353—367 Electrostatics, and ionic crystals 385—390 Emission of radiation 309—310 317—320 322—333 Emissive power 309—310 325—326 Energy see “Conservation of energy; Internal energy; Kinetic energy; Potential energy“ Energy bands in metals 493—501 Energy density, in radiation 310—316 324—326 energy levels 41—42 Energy levels of atomic systems 322 338—344 Energy of activation 159—164 257 Ensemble see “Assembly” Enthalpy, and Joule — Thomson effect 197—198 Enthalpy, and latent heats 175—178 Enthalpy, and thermodynamics 20—21 Entropy, and equilibrium of phases 170—173 Entropy, and fluctuations 107 Entropy, and kinetic method 89—91 98—99 Entropy, and phase change of second order 291—304 Entropy, and phase equilibrium in binary systems 272—290 Entropy, and statistical mechanics 32—35 43—51 Entropy, and thermodynamics 9—14 17—18 21 Entropy, in Fermi — Dirac and Einstein — Bose statistics 69—72 Entropy, of diatomic gas 140 Entropy, of fusion 171—180 258—269 Entropy, of mixture of gases 121—123 128—129 Entropy, of perfect gas 117—119 127 Entropy, of perfect gas, Fermi — Dirac statistics 78—79 Entropy, of solids 207—218 Entropy, of vaporization 171—180 Equation of state, and phase equilibrium 169—170 Equation of state, and radiation 325 Equation of state, and thermodynamics 16—18 22—23 29—30 Equation of state, between liquid and solid 266—269 Equation of state, between metals and electron gas 463—464 Equation of state, between phases 166—181 184—190 Equation of state, between phases in binary systems 270—290 Equation of state, chemical 150—165 Equation of state, of imperfect gases 182—198 Equation of state, of ionic crystals 385—396 Equation of state, of metals 450—456 479—480 Equation of state, of perfect gas 58—61 Equation of state, of perfect gas Fermi — Dirac statistics 82 Equation of state, of solids 199—221 Equation of state, thermal 13—15 23 37—38 46—51 96 98 Equilibrium, between atoms and electrons 333—335 Equipartition of energy, and Maxwell's distribution 57—58 Equipartition of energy, and specific heat, of polyatomic gases 134 144 146 Equipartition of energy, and specific heat, of solids 213 Ethane, heat of vaporization 434 Ethane, hindered rotation 147—148 Ethane, structure of molecule 402 420—421 Ethane, Van der Waals constants 408 Ethyl alcohol, data regarding melting point 259 Ethyl alcohol, heat of vaporization 434 Ethyl alcohol, Van der Waals constants 408 Ethyl ether, heat of vaporization 434 Ethyl ether, structure of molecule 427 Ethyl ether, Van der Waals constants 408 Ethylene, structure of molecule 402 428 Ethylene, Van der Waals constants 408 411 Eutectic 284—285 Exchange, and interatomic forces 367—374 Excitation of atoms 321—333 343 Exclusion principle 342 Exclusion principle and interatomic forces 369—372 Explosion 158—159 External work 3 7—9 17 21—22 External work and statistical mechanics 49 Face-centered cubic structure, and metals 445—447 Face-centered cubic structure, and molecular vibrations 232 Face-centered cubic structure, and order-disorder 293 Face-centered cubic structure, description and figure 415 Face-centered cubic structure, in inert gases 416 Fermi-Dirac statistics 52 65—85 Fermi-Dirac statistics and atomic structure 342 Fermi-Dirac statistics and exchange effect 369 Fermi-Dirac statistics and fluctuations 108—109 Fermi-Dirac statistics and kinetic method 96—100 Fermi-Dirac statistics and metals 471 475—484 Fermi-Dirac statistics and perfect gas 126 ferromagnetism 292—293 Fibers, silicate 439 Field, electric, and interatomic forces 359—360 366 Field, in metal 472—501 First law of thermodynamics 7—8 19 First law of thermodynamics and statistics 49—51 Fluctuations 32 101—111 Fluorite structure 396—397 Forces between molecules 130—133 Forces between molecules and Van der Waals' equation 182—184 194—196 Forces between molecules in solids 271—277 Forces between molecules interpretation from atomic theory 352—376 Formic acid, structure of molecule 427 Free electrons in metals 475—489 Free energy, Gibbs, and chemical equilibrium 154—158 Free energy, Gibbs, and equilibrium of phases 170—180 Free energy, Gibbs, and melting 265—269 Free energy, Gibbs, and phase changes of second order 296—304 Free energy, Gibbs, and phase equilibrium in binary systems 270 278—290 Free energy, Gibbs, and thermionic emission 463—464 Free energy, Gibbs, and thermodynamics 22—23 Free energy, Gibbs, and Van der Waals' equation 184—189 Free energy, Gibbs, of diatomic gas 140 Free energy, Gibbs, of mixture of gases 123—124 Free energy, Gibbs, of perfect gas 120 Free energy, Gibbs, of solids 205—211 Free energy, Helmholtz, and Fermi — Dirac and Einstein — Bose statistics 73 79 82 Free energy, Helmholtz, and melting 265—269 Free energy, Helmholtz, and second virial coefficient 193—194 Free energy, Helmholtz, and statistical mechanics 50—51 Free energy, Helmholtz, and thermodynamics 21—22 Free energy, Helmholtz, of perfect gas 119 126 Free energy, Helmholtz, of solids 205—211 216—218 Free expansion of gas 30 196—198 Freezing see “Melting” Frequency of oscillation, diatomic molecule 141 Frequency of oscillation, molecular solid 241—255 Frequency of oscillation, solid 213—240 Friction 3 Fusion 23 166—169 171—176 256—269 Gallium, crystal structure 447 Gallium, data regarding melting point 259 Gas constant 33 Gas constant numerical values 60 Gases, and equilibrium with other phases 166—180 Gases, imperfect, and Van der Waals' equation 182—198 Gases, perfect 17 30 Gases, perfect and Maxwell — Boltzmann distribution 53—64 Gases, perfect, chemical equilibrium in 150—165 Gases, perfect, polyatomic 130—149 Gases, perfect, thermodynamic and statistical treatment 115—129 Gases, perfect, translational energy levels in quantum theory 54—55 Gases, Van der Waals constants 408 Gauss error curve 106 Germanium, crystal structure 444 447—449 Germanium, melting point 449 Gibbs 32 44 107 Gibbs free energy see “Free energy Gibbs” Gibbs's paradox 129 Glass 256—258 Glass structure 442 Glass variability of composition 273 Gliding 457 Gold, crystal structure 447 Gold, data regarding melting point 259 Gold, Debye temperature 237 Gold, equation of state and energy 451 454 Gold, order-disorder in alloys 293—294 Graphite structure 429 Gravity 4 Gruneisen, of ionic crystals 392—394 Gruneisen, of metals 451—456 Gruneisen, thermal expansion 217—221 238—240 H theorem 90 Hafnium, crystal structure 447 Hafnium, equation of state 451 Halogens, and homopolar bonds 400—408 Halogens, and organic compounds 425—426 Halogens, characteristic temperature, for rotation 136 Halogens, characteristic temperature, for vibration 142 Halogens, data regarding melting point 259 Halogens, heat of dissociation, interatomic distance, Morse constant 132 Heat absorption 7—9 12—13 20 Heat absorption and statistical mechanics 49 heat capacity see “Specific heat” heat engine 13 172 Heat flow 12—13 Heat, latent see “Latent heat of of Heat, of dissociation, and equilibrium of ions and electrons 334 Heat, of dissociation, diatomic molecules, table 132 Heat, of reaction 156—158 Heat, specific see “Specific heat” Heitler — London method 367—368 Helium, specific heat 130 Helium, Van der Waals constants 408 Helmholtz free energy see “Free energy Helmholtz” Hexagonal close-packed structure, and metals 445—447 Hexagonal close-packed structure, and molecular vibration 232 Hexagonal close-packed structure, description and figure 417 Hexane, structure of molecule 423 Hindered rotation 147—149 417—418 Homopolar valence attraction 373—376 400—407 Homopolar valence attraction and organic compounds 420—434 Homopolar valence attraction and silicates 435—443 Hydrogen bromide, data regarding melting point 259 Hydrogen bromide, valence structure 404—405 Hydrogen bromide, Van der Waals constants 408 Hydrogen chloride, characteristic temperature, for rotation 136 Hydrogen chloride, characteristic temperature, for vibration 142 Hydrogen chloride, crystal structure and hindered rotation 417 Hydrogen chloride, data regarding melting point 259 Hydrogen chloride, dipole moment 358 Hydrogen chloride, heat of dissociation, interatomic distance, Morse constant 132 Hydrogen chloride, heat of vaporization 414 Hydrogen chloride, valence structure 404—405 Hydrogen chloride, Van der Waals constants 408 Hydrogen sulphide, valence structure 405 Hydrogen sulphide, Van der Waals constants 408 Hydrogen, and homopolar bonds 400—408 Hydrogen, and organic compounds 420—434 Hydrogen, characteristic temperature, for rotation 136 Hydrogen, characteristic temperature, for vibration 142 Hydrogen, combination with oxygen to form water 151—164 Hydrogen, data regarding melting point 259 Hydrogen, heat of dissociation, interatomic distance, Morse constant 132 Hydrogen, heat of vaporization 414 Hydrogen, interatomic potential 371 Hydrogen, specific heat 137—138 Hydrogen, Van der Waals constants 408 411 Ice, crystal structure 412 418—419 Ice, polymorphic forms 167—170 Ice, structure 260 Image force 461 474—475 Impenetrability of matter 130 Imperfect gases, and phase equilibrium 166—170 Imperfect gases, and Van der Waals' equation 182—198 Independent variables 17—18 Indium, crystal structure 447 Indium, data regarding melting point 259 Induced emission 325 Inelastic collisions 327 Inert gases, and periodic table 345—350 Inert gases, crystals 416 Inert gases, volumes of atoms 384 Insulators, and energy bands 495—501 Integrals independent of path 8 13 Interatomic distances, in crystals of inert gases 416 Interatomic distances, in crystals, and formulas for thermodynamic quantities 212—213 Interatomic distances, in diatomic molecules, table 132 Interatomic distances, in ionic crystals, table 381—382 Interatomic distances, in metals 447 Interatomic distances, in organic compounds 420—434 Interatomic forces 130—133 Interatomic forces, and second virial coefficient 191—196 Interatomic forces, and Van der Waals' equation 182—184 Interatomic forces, and vibrations of atoms in crystals 211—240 Interatomic forces, in ionic crystals 385—390 Interatomic forces, in metals 451—456 Interatomic forces, in organic compounds 433 Interatomic forces, interpretation from atomic theory 352—376 Interference of light, and quantum theory 319—320 Intermolecular forces, in gases 410—414 Internal energy 6—9 17 Internal energy and melting 258—269 Internal energy and phase change of second order 295 301 Internal energy at absolute zero 179 Internal energy of mixture of gases 123 Internal energy of perfect gas, Boltzmann statistics 117 Internal energy of perfect gas, Fermi — Dirac statistics 77—78 81—82 Internal energy of solids 205—220 Internal energy of solutions 275—277 Internal pressure 182—184 Iodine, and homopolar bond 400—408 Iodine, and organic compounds 426 Iodine, characteristic temperature, for rotation 136 Iodine, characteristic temperature, for vibration 142 Iodine, crystal structure 418 Iodine, dissociation 133 Iodine, heat of dissociation, interatomic distance, Morse constant 132 Ionic crystals 375 377—399 Ionic radii 382—385 Ionization potential 322 334 343 Ionization potential, table of 348 Ionization, of atoms 321—335 Ions, and atomic structure 321—335 337—338 351 Ions, forces between 357—358 Ions, formation in solution 272—274 290 Iridium, crystal structure 447 Iron, crystal structure 447 Iron, data regarding melting point 259 261 Iron, Debye temperature 237 Iron, equation of state and crystal structure 451 454 Iron, molecular volume 261 Iron, thermal expansion 261 Irreversible process 11—13 16 Irreversible process and kinetic approach to equilibrium 86—92 96—98 Irreversible process and statistical mechanics 43—46 Isomers 423 Isothermal processes 19 Isothermals, and Van der Waals equation 184—186 Isothermals, of solid 200 Isotopes 336—337 Joule 5 Joule — Thomson effect 195—198 Joule's law 30 115 Kinetic energy, and exchange effect 369 Kinetic energy, and exchange effect and Maxwell — Boltzmann law 60 Kinetic energy, and exchange effect of polyatomic molecules 134 144 Kinetic theory 15 86—100 Kinetic theory and chemical reactions 151—154 158—165 Kinetic theory and radiation 324—333 Kinetic theory and thermionic emission 465—471 480—484 
                            
                     
                  
			Ðåêëàìà