Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Kundu P.K., Cohen I.R. — Fluid mechanics
Kundu P.K., Cohen I.R. — Fluid mechanics



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Fluid mechanics

Àâòîðû: Kundu P.K., Cohen I.R.

Àííîòàöèÿ:

This book is a basic introduction to the subject of fluid mechanics and is intended for undergraduate and beginning graduate students of science and engineering. There is enough material in the book for at least two courses. No previous knowledge of the subject is assumed, and much of the text is suitable in a first course on the subject. On the other hand, a selection of the advanced topics could be used in a second course. I have not tried to indicate which sections should be considered advanced; the choice often depends on the teacher, the university, and the field of study. Particular effort has been made to make the presentation clear and accurate and at the same time easy enough for students. Mathematically rigorous approaches have been avoided in favor of the physically revealing ones.


ßçûê: en

Ðóáðèêà: Ôèçèêà/Êëàññè÷åñêàÿ ôèçèêà/Ìåõàíèêà æèäêîñòè è ãàçà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: second edition

Ãîä èçäàíèÿ: 2002

Êîëè÷åñòâî ñòðàíèö: 730

Äîáàâëåíà â êàòàëîã: 19.06.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Laminar flow, creeping flow, around a sphere      297—302
Laminar flow, defined      272
Laminar flow, diffusion of vortex sheet      289—290
Laminar flow, Helen — Shaw      306—308
Laminar flow, high and low Reynolds number flows      295—297
Laminar flow, oscillating plate      292—295
Laminar flow, pressure change      273—274
Laminar flow, similarity solutions      282—288
Laminar flow, steady flow between concentric cylinders      279—282
Laminar flow, steady flow between parallel plates      274—277
Laminar flow, steady flow in a pipe      277—279
Laminar jet      350—358
Laminar shear layer, decay of      371—374
Laminar solution, breakdown of      330—332
Lanchester lifting line theory      646—651
Lanchester, Frederick      636
Laplace equation      150
Laplace equation, numerical solution      176—181
Laplace transform      288
Law of the wall      529—531
Lee wave      606—608
Leibniz theorem      77 78
Lift force, airfoil      633—635
Lift force, airfoil, characteristics for airfoils      653—655
Lift force, airfoil, Zhukhovsky      642—645
Lift theorem, Kutta — Zhukhovsky      165 168—170 635
Lifting line theory, Prandtl and Lanchester      646—651
Lifting line theory, results for elliptic circulation      651—653
Limit cycle      486
Limit cycle, linear strain rate      56—58
Line forces      84
Line vortex      126 290—292
Liquids      3—4
Logarithmic law      531—534
Long-wave approximation      See Shallow-water approximation
Lorenz, E., model of thermal convection      488—489
Lorenz, E., strange attractor      489—490
MAC (marker-and-cell) scheme      396—400
Mach angle      694
Mach cone      694—695
Mach line      694
Mach number      227 270 662—663
Mach, Ernst      663
Magnus effect      166
Marginal state      432
Mass transport velocity      234
Mass, conservation of      79—81
Material derivative      52—53
Material volume      78—79
Mathematical order, physical order of magnitude versus      361
Matrices, dimensional      261—262
Matrices, multiplication of      28—29
Matrices, rank of      261—262
Matrices, transpose of      25
Matrix equations      388—390
Mean continuity equation      507
Mean heat equation      511—512
Mean momentum equation      507—508
Measurement, conversion factors      707
Measurement, units of SI      2—3
Mechanical energy equation      104—107
Mixed finite element      404—406
Mixing layer      475—476
Mixing length      536—539
Model testing      266—268
Modeling error      379
Momentum equation, Boussincsq equation and      119
Momentum integral, von Karman      332—335
Momentum principle, for fixed volume      88—91
Momentum principle, for fixed volume, angular      92—93
Momentum, conservation of      86—88
Momentum, diffusivity      273
Momentum, thickness      320—321
Momenuim principle, for control volume      670—671
Monin — Obukhov length      543
Narrow-gap approximation      451
Navier — Stokes equation      97—99 258
Navier — Stokes equation, convection-dominated problems      394—396
Navier — Stokes equation, incompressibility condition      396
Neumann problem      176
Neutral state      432
Newton's law of friction      7
Newton's law of motion      86
Newtonian fluid      94—97
No-slip condition      272
Non-Newtonian fluid      97
Nondimensional parameters, determined from differential equations      257—260
Nondimensional parameters, dynamic similarity and      264—266
Nondimensional parameters, significance of      268—270
Nonrotating frame, vorticity equation in      134—136
Nonuniform expansion      363—364
Nonuniform expansion at low Reynolds number      364
Nonuniformity      See also Boundary layers
Nonuniformity, high and low Reynolds number flows      295—297
Nonuniformity, of Stokes' solution      302—306
Nonuniformity, Oseen's equation      303—306
Nonuniformity, region of      364
Normal modes for uniform N      583—586
Normal modes in continuous stratified layer      579—586
Normal modes instability      431—432
Normal shock waves      680—685
Normal strain rale      56—58
Normalized autocorrelation function      503
Nozzle flow, compressible      676—679 685—690
Numerical solution, Laplace equation      176—181
Numerical solution, of plane flow      176—181
Oblique shock waves      696—700
Observed frequency      607
One-dimensional approximation      68
One-dimensional flow, area / velocity relations      676—679
One-dimensional flow, equations for      667—671
Order, mathematical versus physical order of magnitude      361
Ordinary differential equations (odes)      389
Orifice flow      115—117
Orr — Sommerfeld equation      470—471
Oscillating plate, flow due to      292—295
Oscillatory mode      432 447—448
Oseen's approximation      303—306
Oseen's equation      303
Outer layer, velocity defect law      531
Overlap layer, logarithmic law      531—534
Panicle derivative      53
Parallel flows, instability of continuously stratified      461—467
Parallel flows, inviscid stability of      471—475
Parallel flows, results of viscous      475—480
Parallel plates, steady flow between      274—277
Parallel shear flows      63—64
Particle orbit      589—590 603—605
Pascal's law      11
Path functions      13
Path lines      55—56
Perfect differential      175
Perfect gas      16—17
Permutation symbol      35
Perturbation pressure      204
Perturbation techniques      359
Perturbation techniques, asymptotic expansion      361—363
Perturbation techniques, nonuniform expansion      363—364
Perturbation techniques, order symbols/gauge functions      360—361
Perturbation techniques, regular      364—366
Perturbation techniques, singular      366—371
Perturbation vorticity equation      616—618
Petrov — Galerkin methods      387
Phase propagation      612
Phase space      486
Phenomenological laws      6
Physical order of magnitude, mathematical versus      361
Pi theorem, Buckingham's      262—264
Pilot tube      114—115
Pipe flow, instability and      477
Pipe, steady laminar flow in a      277—279
Pitch axis of aircraft      631
Plane Couette flow      276 477
Plane irrotational flow      176—181
Plane jet, self-preservation      525—526
Plane jet, turbulent kinetic energy      526—528
Plane Poiseuille flow      276—277
Plane Poiseuille flow, instability of      476—477
Planetary vorticity      138 140 563
Planetary waves      See Rossby waves
Plastic state      4
Poincare waves      588
Poincare, Henri      492
Point of inflection criterion      336
Poiseuille flow, circular      277—279
Poiseuille flow, instability of      476—477
Poiseuille flow, plane laminar      276—277
Polar coordinates      72—73
Polar coordinates, cylindrical      710—711
Polar coordinates, plane      712
Polar coordinates, spherical      712—714
Potenlial temperature and density      19—21
Potential density gradient      21 541
Potential energy, baroclinic instability      621—623
Potential energy, mechanical energy equation and      106—107
Potential energy, of surface gravity wave      208
potential flow      See Irrotational flow
Potential vorticity      597
Potential, complex      153
Prandtl and Lanchester lifting line theory      646—651
Prandtl biographical information      715—716
Prandtl number      270
Prandtl number, turbulent      542
Prandtl — Meyer expansion fan      700—702
Prandtl, Ludwig      2 313
Prandtl, mixing length      536—539
Pressure gradient, boundary layer and effect of      335—336 477—478
Pressure gradient, constant      275
Pressure wave      665
Pressure, absolute      9
Pressure, coefficient      160 260
Pressure, defined      5 9
Pressure, drag      634 654
Pressure, dynamic      115 273—274
Pressure, gauge      9
Pressure, stagnation      115
Pressure, waves      194
Principal axes      40 60—63 64
Principle of exchange of stabilities      432
Profile drag      654
Proudman theorem, Taylor-      567—569
Quasi-geostrophic motion      609—610
Quasi-periodic regime      492
Random walk      549—550
Rankine — Hugoniot relations      681
Rankine, vortex      67—68
Rankine, W.J.M.      681
Rayleigh equation      471
Rayleigh inflection point criterion      472 613
Rayleigh inviscid criterion      448—449
Rayleigh number      433
Reduced gravity      241
Reducible circuit      175
Refraction, shallow-water wave      212—213
Regular perturbation      364—366
Relative vorticity      596
Relaxation time, molecular      12
Renormalization group theories      539
Reversible processes      13
Reynolds analogy      543
Reynolds analogy, decomposition      506—507
Reynolds analogy, experiment on flows      272
Reynolds analogy, similarity      526
Reynolds analogy, stress      508—511
Reynolds analogy, transport theorem      79
Reynolds number      149 259 268 339
Reynolds number, high and low flows      295—297 339 342—345
Reynolds, O.      498
Rhincs length      625—626
Richardson number      269 541—543
Richardson number, criterion      464—465
Richardson number, flux      542
Richardson number, gradient      269 465 542
Richardson, L.F.      499
Rigid lid approximation      584—586
Ripples      216
Roll axis of aircraft      631
Root-mean-squarc (rms)      502
Rossby number      565
Rossby radius of deformation      594
Rossby waves      608—613
Rotating cylinder, flow inside      281—282
Rotating cylinder, flow outside      280—281
Rotating frame      99—104
Rotating frame, vorticity equation in      136—140
Rotation tensor      61
Rotation, gravity waves with      588—591
Rough surface turbulence      534
Runge — Kutta technique      326 389
Sailing      656—658
Salinity      20
Salt finger instability      444—447
Scalars, defined      24
Scale height, atmosphere      21
Schlieren method      663
Schwartz inequality      503
Sciebe      217
Second law of thermodynamics      14—15
Second law of thermodynamics, entropy production and      109—110
Second-order tensors      29—31
Secondary flows      358—359 453
Secondary instability      483
Self-preservation, turbulence and      524—526
Separation      336—339
Shallow-water approximation      240—242
Shallow-water equations      577—579
Shallow-water equations, high and low frequencies      586—587
Shallow-water theory, vorticity conservation in      595—598
Shear flow, wall-bounded      528—536
Shear flow, wall-free      522—528
Shear production of turbulence      514 517 517—520
Shear strain rate      55
Shock angle      696
Shock waves, normal      680—685
Shock waves, oblique      696—700
Shock waves, structure of      684—685
SI (systeme international d'unites), units of measurement      2—3
SI (systeme international d'unites), units of measurement, conversion factors      707
Similarity      See also Dynamic similarity
Similarity solution      257
Similarity solution for boundary layer      323—330
Similarity solution for impulsively started plate      282—288
Similarity solution for laminar jet      350—358
Similarity solution, decay of line vortex      290—292
Similarity solution, diffusion of vortex sheet      289—290
Similarity, geometric      258
Similarity, kinematic      258
SIMPLE-type formulations      400—403
SIMPLER formulation      406—414
Singly connected region      175
Singular perturbation      366—371 477
Singularities      15.1
Skan, S.W.      329
Skin friction coefficient      328—329
Sloping convection      622
Solenoidal vector      38
Solid-body rotation      65—66 127
Solids      3—4
Solilons      231—232
Sonic conditions      672
1 2 3 4 5
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå