Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Hand L.N., Finch J.D. — Analytical Mechanics
Hand L.N., Finch J.D. — Analytical Mechanics



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Analytical Mechanics

Àâòîðû: Hand L.N., Finch J.D.

Àííîòàöèÿ:

This introductory undergraduate text provides a detailed introduction to the key analytical techniques of classical mechanics, one of the cornerstones of physics. It deals with all the important subjects encountered in an undergraduate course and thoroughly prepares the reader for further study at graduate level. The authors set out the fundamentals of Lagrangian and Hamiltonian mechanics early in the book and go on to cover such topics as linear oscillators, planetary orbits, rigid-body motion, small vibrations, nonlinear dynamics, chaos, and special relativity. A special feature is the inclusion of many "e-mail questions," which are intended to facilitate dialogue between the student and instructor. It includes many worked examples, and there are 250 homework exercises to help students gain confidence and proficiency in problem-solving. It is an ideal textbook for undergraduate courses in classical mechanics, and provides a sound foundation for graduate study.


ßçûê: en

Ðóáðèêà: Ôèçèêà/Êëàññè÷åñêàÿ ôèçèêà/Òåîðåòè÷åñêàÿ ìåõàíèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1998

Êîëè÷åñòâî ñòðàíèö: 574

Äîáàâëåíà â êàòàëîã: 19.06.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Local chaos      442 451
Locomotive (prob)      267
Logistic map      425 481—492 474
Lorentz      494
Lorentz contraction      500
Lorentz force      199 508 537—539
Lorentz invariant      521—526 538
Lorentz invariant, action      530—532
Lorentz invariant, charge      508 534
Lorentz invariant, invariance theorems      524
Lorentz invariant, mass      519 527
Lorentz invariant, Planck's constant      512
Lorentz invariant, proper time      527
Lorentz transformation      498—501 503—504 555—556 544
Lorentzian line shape      109
Lorenz equations (prob)      477
Lyapuinov conservative systems      449—450
Lyapuinov dimension      See dimension Lyapunov
Lyapuinov dissipative systems      458—459 467 471—472
Lyapuinov logistic map      483 485—486
Lyapunov time      471
m-cycle, logistic map      481
Mach's principle      323—325
Mach, E.      324 513 528
MACHOS      155
Maclaurin      342
Magnetic field      493 509—510 522 (30 74 277 550—551)
Magnetic field, charged panicle      See particle in electric and magnetic fields
Magnetic field, relativistic particle      See particle in a magnetic field relativistic
Magnetic force, transformation Law      See transformation law electric
Magnification      See dimension magnification
Manifold, stable      440 446
Manifold, unstable      440 446
Map, area-preserving      431—432
Map, logistic      See logistic map
Map, Poincare section      434 439—440
Map, standard (prob)      See standard map (prob)
Map, tangent      See stability matrix
Marginal stability      See stability marginal
MARS      See solar system stability
Mass, definition of      512—513
Mass, inertial      324
Mass, reduced      136—137
Mass, rest      513—517
Matching boundary conditions      96—98
Mathematical Principles of Natural Philosophy      133
Mathieu equation      383 395—398
Mathieu functions      397
Matrix, antisymmetric      See antisymmetric matrix
Matrix, hermitian      See Hermitian matrix
Matrix, identity      See identity matrix
Matrix, mondronomy      See stability matrix
Matrix, notation      262
Matrix, orthogonal      263
Matrix, stability      See stability matrix
Matrix, transformation      265
Matrix, unitary      See unitary matrix
Maupertuis      55 339
Maupertuis' Principle      75—80 (74 162)
Maupertuis, cannonball trajectory      77
Maxwell, J.      493
Mayer      514
Mechanique Analitique      23 86
Mercury      See solar system stability
Mercury, precession of      154
Method of matching boundary conditions      96—98
Method of successive approximations      See successive approximations method 356
Metric tensor      51 529
Michclson — Moriey experiment (prob)      551
Milankovitch, M.      323
Minimal action principle of Maupertuis      See Maupertuis' Principle
Minimal optical pain for light      55
Minkowski      495 501
Mixer      402
mks units      See SI units
MODE      See normal mode
Mode, amplitude ratio      See mode displacement ratio
Mode, displacement ratio      343 346 352 353—355 357 361 363—367
Mode, frequency      343 353 357 352—366 374
Mode, vector      352 355 362—367
Mode-tacking      See phase locking
Molecule, diatomic (prob)      See diatomic molecule (prob)
Molecule, diatomic linear      See triatomic molecule linear
Moment of inertia tensor      See inertia tensor
Momental ellipsoid      See ellipsoid momental
Moments, principal      See principal moments
Momentum conservation      519
Momentum conservation, space      189—190 201—202
Momentum conservation, space, Lagrangian      190
Momentum, canonically conjugate      See canonically conjugate momentum
Momentum, relativistic      517—519 547
Momentum, transverse, relativistic      517 532 548
Mondronomy matrix      See stability matrix
Moon      See solar system stability
Moser      See KAM theorem
Multiplicative ergodic theorem      See Oseledic's multiplicative ergodic theorem
Mylar, aluminized      517
n-torus      See torus
Neutral equilibrium      See equilibrium neutral
Neutral fixed point      See fixed point neutral
Neutrinos      155 528
Newton's second law      2 5 17 512—513
Newton's Third Law      3
Newton, Isaac      45 132—133 284 299 324 339—342 423 468 493
Newtonian mechanics, review with sliding block example      1—3
Noetber, Emmy      172
Noether's theorem      172—175 245
Nonconservative force      90
Nonconservative force, example of a rubber band      42—43
Nonconstraint force      5
Nondissipative chaos      See chaos in
Nonholonomic constraints      See constraints nonholonomic
Noninertial reference frames      See reference frames noninertial
Nonintegrable      36 63 207 237 305 425 442 447—448 451—452
Nonlinear oscillator      See oscillator nonlinear
Nonlinear pendulum      See pendulum nonlinear
Nonlinear resonance      425
Nonlinear resonance, double pendulum      440—442
Normal coordinates      343 359
Normal mode      343 352—355
Normal mode frequency      See mode frequency
Normalization      338 356—357
North pole      339—340
Nuclear magnetic resonance      277
Nutation      316 333
Oblate ellipsoid      See ellipsoid oblate
Obliquity      317
Obliquity, chaotic of Earth      474
ODE      See differential equation ordinary
One-dimensional systems      123—125 158
Orbital period      147
Orbits, of Kepler problem      143—151
Order of infinity      See infinity orders
Ordinary differential equation      See differential equation ordinary
Orthogonal matrix      263 277—278
Orthogonal modes      355—356
Orthogonal transformation      288 302 336
Oscillations, harmonic      See harmonic oscillations
Oscillations, small      See small oscillations
Oscillations, subharmonic      See subharmonic oscillations
Oscillator, anharmonic      See anharmonic oscillator
Oscillator, damped      81
Oscillator, damped simple harmonic      90—94 103 106—110 116—120
Oscillator, damped simple harmonic, complex driving force, steady state      108
Oscillator, damped simple harmonic, critically damped      92
Oscillator, damped simple harmonic, overdamped      92
Oscillator, damped simple harmonic, response to sinusoidal driving force, relative phase      110—113
Oscillator, damped simple harmonic, underdamped      91
Oscillator, driven      81 94—113
Oscillator, driven, damped simple harmonic (prob)      120—121
Oscillator, driven, simple harmonic (proh)      119
Oscillator, Duffing      See Duffing oscillator
Oscillator, linear      See osclllaior simple
Oscillator, nonlinear      125—127 121—122
Oscillator, simple harmonic      81 88—90 124 212—213 218 237—239 (115 202 240 246 551)
Oscillator, simple harmonic response to sinusoidal driving force      106
Oscillator, simple harmonic, general solution with Green's function      99—102 105
Oscillator, simple harmonic, Hamiltonian      See Hamiltonian oscillator simple
Oscillator, simple harmonic, steady-state solution      95 97—98 107-J08
Oscillator, simple harmonic, step function drive force      96—99
Oscillator, simple harmonic, stored energy      94 109
Oscillator, simple harmonic, transient solution      95 97—98 107—108
Oseledic's multiplicative ergodic theorem      449
Overdamped      See oscillator damped
parabola      144
Parabolic orbits      145 164
Parallel axis theorem      289
parallel plate capacitor      508—510
Parametric amplification      384
Parametric amplifiers      390
Parametric resonance      334 388—398 414—419
Parametric resonance, unstable      397
Particle decay      528 546
Particle decay, in a gravitational Meld, Hamiltonian — Jacobi equation      220—222 224—228
Particle decay, in a magnetic field      30 74
Particle decay, in a magnetic field, relativistic      539—540
Particle decay, in electric and magnetic fields, Lagrangian and Hamiltonian      192
Particle decay, on a parabolic wire, Hamiltonian      182—183
Particular solution      See oscillator steady-state
Pendulum      See also oscillator [33—34 116—117 373 415 419]
Pendulum (prob), physical      See physical pendulum (prob)
Pendulum (prob), triple      See triple pendulum (prob)
Pendulum, action-angle variables      231—232
Pendulum, damped driven      See damped driven pendulum
Pendulum, double      See double pendulum
Pendulum, equilibrium      82—83
Pendulum, linear      58—59
Pendulum, nonlinear      125—130
Pendulum, nonlinear, libration      126
Pendulum, nonlinear, period      128—130
Pendulum, nonlinear, phase portrait      127—128
Pendulum, nonlinear, rotation      126
Pendulum, spherical      See spherical pendulum
Pendulum, spring      See spring pendulum
Pendulum, two coupled      344—348 376—377
Pendulum, upside-down      See upside-down pendulum
Pendulum, with driven support      388—398 414
Penny example      62—64 73
Perihelion, ellipse      See ellipse perihelion
Period doubling      456—458 483—485
Period doubling, cascade      457
Period of elliptical motion      See elliptical motion period
Period, anharmonic oscillator      See anharmonic oscillator period
Period, Duffing oscillator      See Duffing oscillator period
Period, nonlinear pendulum      See pendulum nonlinear
Period, orbital      See orbital period
Perpetual motion machine      514
Perturbation      383 384—388 433 439 442
Perturbation theory      398 404—408
Perturbation theory, Lindstedt — Poincare      See Lindstedt — Poincare perturbation theory
Phase advance      390 393
Phase portrait (prob)      156—158
Phase portrait, pendulum      See pendulum nonlinear phase
Phase space      127 203—204 248
Phase space, density      186—189
Phase trajectories      127- 128 424
Phase trajectories of damped drive pendulum      454—457 461—462
phase velocity      526
Phase-locking      425 461
Phenomenological      453
Photon disintegration (prob)      546
Physical pendulum (prob)      32 34 157 332
Pitchfork bifurcation      See bifurcation pitchfork
Planck energy frequency relation      512
Planet, perturbed by Jupiter (prob)      See asteroid perturbed
Planetary orbits (prob)      162—164
Pluto      See solar system stability
Poincare      423—424 426 428 433 439 447—448 468 494
Poincare recurrence theorem      204—206
Poincare section      393 428—436 442—443 445 451 459
Poincare section, damped driven pendulum      454—457 462—463
Poincare section, double pendulum      430—433 435 441 451
Poincare section, section map      See map Poincare
Poincare — Birkhoff theorem      439—442
Poincare — Hopf theorem      235
Poinsot construction      283 307—312
Poinsot, L.      306
Point mass sliding on a bowling ball      38—39
Point masses, N connected by a string      367—371 379
Point masses, transformation      208 216
Poisson brackets      207 217—218 236—237 251 243—245
Polaris      317
Polhode      308 311—312
Positive definite      288 337 351
Positronium acceleration (prob)      550
Postulates, of special relativity      See special relativity two
potential energy      18—19 42 85—86 (See
Potential energy for the earth in a gravitational field      318
Potential energy matrix, Taylor series near equilibrium      350
Potential, effective      See effective potential
Poynting vector      507 517
Precession      273 295—298 315—316 321
Precession of equinoxes      See equinoxes precession
Precession of Foucault pendulum      See Foucault pendulum
Precession of Kepler ellipses (prob)      See Kepler ellipses precession
Precession of Mercury      154
Precession of symmetric heavy top      313—316
Precession of torque free top      See symmetric top torque asymmetric torque
Precession, retrograde      317
Pressure, radiation      See radiation pressure
Primed frame      260
Principal axis      283 292 306 339
Principal axis, transformation      288
Principal moments      288
Principia      133 340 474
Principle of least action      See Hamilton's Principle of Relativity 493^494
Processing orbits      154
Prolate ellipsoid      See ellipsoid prolate
Proper time      527 331
Proper time for a particle in a constant force      536—537
Proton-proton annihilation      517—518
Pseudovector      257 277
Ptolemy      130 317
Pumping a swing (prob)      416
Pythagorean Theorem      50
q      See quality factor
Quadratic form      22 351 29
Quadrature      22 125
Quality factor      90 93—94 453
quantum mechanics      44 229—230 67
Quasiperiodec      238
Quasiperiodec, route to chaos      428
Radiation pressure      517
Radiation reaction force      533
Radiofrcquency resonant cavity      185
Rank, of tensor      333
Rapidity (prob)      544
Rational winding number      See winding number rational
Reduced echelon form      337
Reduced mass      137
Reference frames      495
Reference frames, body      260 (see also body coordinate system)
Reference frames, inertial      See inertial reference frames
Reference frames, linearly accelerated      193—195
Reference frames, noninertial      20
Reference frames, noninertial (prob)      200
Reference frames, rotated      See rotated reference frames
Reference frames, rotating      See rotating reference frames
Reference frames, space      260 See
Reflection      257 (see also transformations discrete)
1 2 3 4
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå