Àâòîðèçàöèÿ 
		         
		        
					
 
		          
		        
			          
		        
			        Ïîèñê ïî óêàçàòåëÿì 
		         
		        
			        
					 
		          
		        
			          
			
			         
       		 
			          
                
                    
                        
                     
                  
		
			          
		        
			          
		
            
	     
	    
	    
            
		
                    Hand L.N., Finch J.D. — Analytical Mechanics 
                  
                
                    
                        
                            
                                
                                    Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå    Íàøëè îïå÷àòêó? 
 
                                
                                    Íàçâàíèå:   Analytical MechanicsÀâòîðû:   Hand L.N., Finch J.D. Àííîòàöèÿ:  This introductory undergraduate text provides a detailed introduction to the key analytical techniques of classical mechanics, one of the cornerstones of physics. It deals with all the important subjects encountered in an undergraduate course and thoroughly prepares the reader for further study at graduate level. The authors set out the fundamentals of Lagrangian and Hamiltonian mechanics early in the book and go on to cover such topics as linear oscillators, planetary orbits, rigid-body motion, small vibrations, nonlinear dynamics, chaos, and special relativity. A special feature is the inclusion of many "e-mail questions," which are intended to facilitate dialogue between the student and instructor. It includes many worked examples, and there are 250 homework exercises to help students gain confidence and proficiency in problem-solving. It is an ideal textbook for undergraduate courses in classical mechanics, and provides a sound foundation for graduate study.
ßçûê:  Ðóáðèêà:  Ôèçèêà /Êëàññè÷åñêàÿ ôèçèêà /Òåîðåòè÷åñêàÿ ìåõàíèêà /Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ:  Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö ed2k:   ed2k stats Ãîä èçäàíèÿ:  1998Êîëè÷åñòâî ñòðàíèö:  574Äîáàâëåíà â êàòàëîã:  19.06.2005Îïåðàöèè:  Ïîëîæèòü íà ïîëêó  |
	 
	Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà  | Ñêîïèðîâàòü ID 
                                 
                             
                        
                     
                 
                                                                
			          
                
                    Ïðåäìåòíûé óêàçàòåëü 
                  
                
                    
                        EOM See equations of motion Epicycles 130—131 Equant 130—131 Equations of motion 17—19 23—24 51 54 Equator 339—340 Equatorial bulge, Earth's 339—342 332 Equilibrium 82—87 114 Equilibrium, dynamical 384 Equilibrium, neutral 85 Equilibrium, pendulum 82—83 Equilibrium, stable 82 125 Equilibrium, unstable 82 125 Equinoxes, nulation of (prob) 333 Equinoxes, precession of 317—323 Ether 493 Euler angles 284 300—302 Euler equation 46—49 65 Euler force 267 Euler — Lagrange equations 19 23—24 51 54 Euler — Lagrange equations, matrix form 352 Euler — Lagrange equations, normal coordinates 359 Euler's equations 283 292—293 297—299 329—330 Euler, Leonard 23 46 299 Exotic particle decay (prob) See particle decay (prob) Exponent, characteristic See characteristic exponent Extended action 76 Extremum 46 49 Falkland Islands battle (prob) 279 Feigenbaum constant 458—459 487 490 Feigenbaum, M.J. 457 485 486 Fermat 55 Fermat's principle 55 75 229 68 Fictitious force 25 253 267 [279—282 290] Fig tree 4?5 486 Filamentation 186 Fixed point 481—482 Fixed point, elliptic 431 434—435 440—441 445 Fixed point, hyperbolic 435 440—442 446—448 Fixed point, neutral 428—483 485 Fixed point, stable 482 485 Fixed point, superstable 482—486 Fixed point, unstable 482—382 485 Fizeau, M. 493 Flip hyperbolic fixed point 446 Floquet matrix 390—392 Floquet theory 390—395 397 445 Fluid, incompressible See incompressible fluid Forbidden, classically See classically forbidden Force, causing constant acceleration 535—536 Forced oscillator See oscillator driven Foucault pendulum 253 272—275 324 Foucault pendulum (prob) 281 Four-acceleration 555 543 Four-momentum 527 Four-vector 522 Four-vector, energy-momentum 502 526—528 Four-velocity 527 Fourier analysis 86 403—404 Fourier decomposition 390 Fourier series 402 Fractal 425 453 463—468 Frame-dragging 324—325 frames See reference frames Free particle, relativistic Lagrangian See relativstic Lagrangian free Free solution See oscillator transient Frequency of light wave, transformation law See transformation law frequency Frequency of oscillator 88 Frequency, beat 348 Frequency, cyclotron See cyclotron frequency Frequency, mode See mode frequency Frequency, resonant 108 Friction 38 90 Full width at half max 109 Functional 44 46 Functional calculus See variational calculus Fundamental theorem of symmetric real matrices 336 Galilean Invariance Principle 54 Galilean transformation laws 504 Galileo, G. 87 105 131—132 494 Gauss 148 Gauss — Jordan elimination 337 Gaussian units See cgs units Gedanken experiment, cylindrical cavity 519—521 General relativity 44 154 494 530 420—422 Generalised coordinates 10 350 Generalised equations of motion 17—18 Generalised forces 14—15 18—19 82 Generalised forces, central force 24—25 Generalised forces, kinetic energy 16—17 Generalised momentum See canonical momentum Generalised velocities 14 Generating function 207 210—217 240—244 Geodesic curve 51 66—67 Gibbs, J.W. 253 Global chaos 442 451 Golden mean 437 Governor (prob) 32 Gradient vector 307 Grandfather's clock See pendulum nonlinear Gravitational constant 339—342 Gravitational field, particle in, Hamiltonian — Jacobi equation 220—222 224—228 Gravitational field, potential energy of 318 Gravity 134 141—142 159 Gravity Probe B 317 Green's function 96 102 399 120 Green's function, causal 102 Green's function, drive with arbitrary force 103—105 Green's function, simple harmonic oscillator 99—102 103 105 Gulzwiller, M.C. 237 442 Gyroscope 323 330 Hairy boll theorem See Poiincare — Hopf theorem Hale — Bopp 163 Haltey, Edmond 132—133 147—148 Hamilton 48 Hamilton — Jacobi equation 207 218—230 246—247 Hamilton — Jacobi equation, particle in a gravitational field 220—222 224—228 Hamilton's characteristic function 222 230 Hamilton's equations of motion 180—181 207 218 248—249 Hamilton's principal function 219 Hamilton's principle 46 51 53—55 75 178—186 220 72 Hamilton's Principle, cannonball example See cannonball example Hamiltonian 21—22 175 178 180 211 234 29—30 551 Hamiltonian bug crawling on a phonograph turntable See bug crawling on a phonograph turntable Hamiltonian chaos See chaos in Hamiltonian charged particle in electric and magnetic fields 192 Hamiltonian double pendulum, exact See double pendulum exact Hamiltonian dynamics 175—184 197—198 Hamiltonian dynamics, in accelerated systems 190—193 Hamiltonian invariance See invariance Hamiitonian Hamiltonian particle on a parabolic wire See particle on a parabolic wire Hamiltonian Hamiltonian relativistic See relativistic Hamiltonian Hamiltonian simple harmonic oscillator 88 182 Hamiltonian spherical pendulum See spherical pendulum Hamiltonian handedness 456 Harmonic analysis 402—404 Harmonic oscillations 383 Hausdorf dtmensiun See dimension Hausdorff Heavy symmetric top See symmetric top heavy Heliocentric 130—132 317 Henon — Heiles Hamiltonian (prob) 378 478 Hermaitian matrices 337 Herpolhode 308 311—3l2 Heteroclinic point 447 Heteroclinic tangle 448 Hill equation 383 389—395 409 411 Hill G.W. 389 Hinparchus of Rhodes 317 Homoclinic constants See constraints holonomic Homoclinic point 447 Homoclinic tangle 446—448 Homogenous differential equation See differential equation Hooke's law 154 Hooke, Robert 132 Hubble telescope 155 Hurricanes 253 271—272 281 Huygens, C. 87 125 480 Hyakutake 163 Hyperbola 144 150 Hyperbolic fixed points See fixed paints hyperbolic 145 150—154 164 Hyperbolic fixed points, attractive force 150—151 153 Hyperbolic fixed points, repulsive force 150—154 Hyperplane, three-dimensional 429 Hysteresis 402 408—409 Ice ages 323 Ice cream cone rolling on a table 257—259 Identity matrix 262 Identity transformation See transformations identity Ignorable coordinates 22—23 133 226 Impact parameter (prob) 165 Impulse force 99 Impulse force, arbitrary force as superposition of 104—105 Impulse force, response of oscillator to 100—101 Inclination 472—473 Inclined plane, example 1—7 Incompressible fluid 188 Index of refraction (prob) See refractive index (prob) Inertia ellipsoid See ellipsoid inertia Inertia tensor 283 286—291 339 327—328 Inertia tensor, dumbbell 290—291 Inertial reference frame 20 252 323—324 494 502 535 Infinitesimal rotation See rotation infinitesimal Infinity, orders of 465 Inhomogenous differential equation See differential equation Initial conditions 7—8 89 Instability 392 Instability, dynamical 383 386 Instantaneous angular velocity See angular velocity Instantaneous axis of rotation See rotation axis Instantaneous rest frame 526—527 535—536 Integrable 425 447—448 451—452 Integrable systems 207 235—237 Intermittency 457 Invariable line 308—3O9 Invariable plane 308 Invariance 28—29 (prob) Invariance theorems See Lorentz invariant invariance Invariance, Hamiltonian 211 Invariance, Lagrangian 171 173 209 Invariance, rotational 170—172 Invariance, transformation See transformation invariance Invariance, translational 135—136 Invariant tori 237—239 424 431—433 435 Invariants, adiabatic See adiabatic invariants Invariants, Lorentz See Lorentz invariant Inverse square force 134 Invertible mapping 55 Involution 235—236 Irrational winding number See winding number irrational Irregular motion 425 447 451 Iteration methods 384 405 Jacobian 203 249—251 432 443—444 452 454 241 Jacobian of Lorentz transformation 501 Jupiter See solar system stability Jupiter, perturbation effects See asteroid perturbed KAM barriers 451 Kam theorem 435—439 KAM tori 433—439 448 451 469 Kepler ellipses, precession of (prob) 420—422 Kepler orbit (prob) 413 Kepler problem 130—133 141—150 196 226 228 Kepler problem, perturbation of 384—388 Kepler's equation, eccentric anamoly 149 Kepler's laws 111—132 139—140 147 Kepler, I. 131—132 Kinematics 252 kinetic energy 127 328 Kinetic energy, asymmetric top See asymmetric top kinetic Kinetic energy, block on inclined plane 4 Kinetic energy, function of both coordinates and velocities 16—17 Kinetic energy, matrix, Taylor series near equilibrium 350 Kinetic energy, moving constraints, bead on rotating wire example 7—9 Kinetic energy, relativiatic change 515—516 Kinetic energy, rigid body 284—286 Kinetic energy, rotational 285—287 Kinetic energy, rotational, symmetric top See symmetric top rotational Kinetic energy, sliding ladder example 16 Kinetic energy, total 2S5 Kinetic energy, translational 285 Kinetic momentum 538—539 Kirkwood 469 Kirkwood gap 469—470 Kohlrausch 493 Kolmogorov See KAM theorem Kovalevskaya, S.V. 451 Kronecker delta 286 307 Lagrange multipliers 56—65 73 Lagrange multipliers, chain example 61 Lagrange multipliers, for problems with explicit holonomic constraints 57—58 Lagrange multipliers, linear pendulum example 58—59 Lagrange multipliers, nonintegrable nonholonomic constraints, penny example 62—64 Lagrange, Joseph Louis 1 23 86 Lagrangian 1 19 51 54—55 83-S6 209 128 30—34 199—200 Lagrangian, bus crawling on a phonograph turntable See bug crawling on a phonograph turntable Lagrangian, cannonball See cannonball Lagrangian, central force See central force Lagrangian, central force, spherical polar coordinates 138 Lagrangian, charged particle in electric and magnetic fields 192 Lagrangian, equation of motion 19 Lagrangian, Foucault pendulum See Foucault pendulum Lagrangian, heavy symmetric top See symmetric top heavy Lagrangian Lagrangian, in center of mass frame 1 17 Lagrangian, invariance See invariance Lagrangian Lagrangian, linear pendulum See pendulum linear Lagrangian, matrix form 351 Lagrangian, mechanics, relativists See relativistic Lagrangian mechanics Lagrangian, momentum space See momentum space Lagrangian Lagrangian, nonlinear pendulum See pendulum nonlinear Lagrangian, normal coordinates 359 Lagrangian, penny See penny Lagrangian, simple harmonic oscillator 88 Lao-Tze 437 Laplace 423 468 Laplace — Rungt — Lerra vector (prob) 196 Larmor frequency 193 Larmor's Theorem 192—193 Laskar, J. 471—474 Least action See Hamilton's Principle Legendre transformations 175—180 211 213 197 Leibnitz 45 75 Length contraction See Lorentz contraction Lenz vector 228 LHC 452 Libration, of pendulum See pendulum nonlinear libration Lie derivative 236 Light cone 522 Light pulse, electric field transformation law See transformation law electric Light wave energy, transformation law See transformation law energy Light, bending (prob) 68—69 Light, emitted by atom 514—517 Light, minimal optical path 55 Light, speed of See speed of light Lighthill, Sir James 474 Lindstedt — Poincare perturbation theory 384 398—401 419—420 Linear differential equation See differential equation Linear linearizing 383 385—386 linear oscillator See oscillator simple Linear pendulum See pendulum linear Linear system 343 Linearly accelerated reference frames See reference frames linearly Liouville's theorem 184—189 202—204 250 391 444 449 452 
                            
                     
                  
			Ðåêëàìà