Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Hand L.N., Finch J.D. — Analytical Mechanics
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Analytical Mechanics
Àâòîðû: Hand L.N., Finch J.D.
Àííîòàöèÿ: This introductory undergraduate text provides a detailed introduction to the key analytical techniques of classical mechanics, one of the cornerstones of physics. It deals with all the important subjects encountered in an undergraduate course and thoroughly prepares the reader for further study at graduate level. The authors set out the fundamentals of Lagrangian and Hamiltonian mechanics early in the book and go on to cover such topics as linear oscillators, planetary orbits, rigid-body motion, small vibrations, nonlinear dynamics, chaos, and special relativity. A special feature is the inclusion of many "e-mail questions," which are intended to facilitate dialogue between the student and instructor. It includes many worked examples, and there are 250 homework exercises to help students gain confidence and proficiency in problem-solving. It is an ideal textbook for undergraduate courses in classical mechanics, and provides a sound foundation for graduate study.
ßçûê:
Ðóáðèêà: Ôèçèêà /Êëàññè÷åñêàÿ ôèçèêà /Òåîðåòè÷åñêàÿ ìåõàíèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1998
Êîëè÷åñòâî ñòðàíèö: 574
Äîáàâëåíà â êàòàëîã: 19.06.2005
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
EOM See equations of motion
Epicycles 130—131
Equant 130—131
Equations of motion 17—19 23—24 51 54
Equator 339—340
Equatorial bulge, Earth's 339—342 332
Equilibrium 82—87 114
Equilibrium, dynamical 384
Equilibrium, neutral 85
Equilibrium, pendulum 82—83
Equilibrium, stable 82 125
Equilibrium, unstable 82 125
Equinoxes, nulation of (prob) 333
Equinoxes, precession of 317—323
Ether 493
Euler angles 284 300—302
Euler equation 46—49 65
Euler force 267
Euler — Lagrange equations 19 23—24 51 54
Euler — Lagrange equations, matrix form 352
Euler — Lagrange equations, normal coordinates 359
Euler's equations 283 292—293 297—299 329—330
Euler, Leonard 23 46 299
Exotic particle decay (prob) See particle decay (prob)
Exponent, characteristic See characteristic exponent
Extended action 76
Extremum 46 49
Falkland Islands battle (prob) 279
Feigenbaum constant 458—459 487 490
Feigenbaum, M.J. 457 485 486
Fermat 55
Fermat's principle 55 75 229 68
Fictitious force 25 253 267 [279—282 290]
Fig tree 4?5 486
Filamentation 186
Fixed point 481—482
Fixed point, elliptic 431 434—435 440—441 445
Fixed point, hyperbolic 435 440—442 446—448
Fixed point, neutral 428—483 485
Fixed point, stable 482 485
Fixed point, superstable 482—486
Fixed point, unstable 482—382 485
Fizeau, M. 493
Flip hyperbolic fixed point 446
Floquet matrix 390—392
Floquet theory 390—395 397 445
Fluid, incompressible See incompressible fluid
Forbidden, classically See classically forbidden
Force, causing constant acceleration 535—536
Forced oscillator See oscillator driven
Foucault pendulum 253 272—275 324
Foucault pendulum (prob) 281
Four-acceleration 555 543
Four-momentum 527
Four-vector 522
Four-vector, energy-momentum 502 526—528
Four-velocity 527
Fourier analysis 86 403—404
Fourier decomposition 390
Fourier series 402
Fractal 425 453 463—468
Frame-dragging 324—325
frames See reference frames
Free particle, relativistic Lagrangian See relativstic Lagrangian free
Free solution See oscillator transient
Frequency of light wave, transformation law See transformation law frequency
Frequency of oscillator 88
Frequency, beat 348
Frequency, cyclotron See cyclotron frequency
Frequency, mode See mode frequency
Frequency, resonant 108
Friction 38 90
Full width at half max 109
Functional 44 46
Functional calculus See variational calculus
Fundamental theorem of symmetric real matrices 336
Galilean Invariance Principle 54
Galilean transformation laws 504
Galileo, G. 87 105 131—132 494
Gauss 148
Gauss — Jordan elimination 337
Gaussian units See cgs units
Gedanken experiment, cylindrical cavity 519—521
General relativity 44 154 494 530 420—422
Generalised coordinates 10 350
Generalised equations of motion 17—18
Generalised forces 14—15 18—19 82
Generalised forces, central force 24—25
Generalised forces, kinetic energy 16—17
Generalised momentum See canonical momentum
Generalised velocities 14
Generating function 207 210—217 240—244
Geodesic curve 51 66—67
Gibbs, J.W. 253
Global chaos 442 451
Golden mean 437
Governor (prob) 32
Gradient vector 307
Grandfather's clock See pendulum nonlinear
Gravitational constant 339—342
Gravitational field, particle in, Hamiltonian — Jacobi equation 220—222 224—228
Gravitational field, potential energy of 318
Gravity 134 141—142 159
Gravity Probe B 317
Green's function 96 102 399 120
Green's function, causal 102
Green's function, drive with arbitrary force 103—105
Green's function, simple harmonic oscillator 99—102 103 105
Gulzwiller, M.C. 237 442
Gyroscope 323 330
Hairy boll theorem See Poiincare — Hopf theorem
Hale — Bopp 163
Haltey, Edmond 132—133 147—148
Hamilton 48
Hamilton — Jacobi equation 207 218—230 246—247
Hamilton — Jacobi equation, particle in a gravitational field 220—222 224—228
Hamilton's characteristic function 222 230
Hamilton's equations of motion 180—181 207 218 248—249
Hamilton's principal function 219
Hamilton's principle 46 51 53—55 75 178—186 220 72
Hamilton's Principle, cannonball example See cannonball example
Hamiltonian 21—22 175 178 180 211 234 29—30 551
Hamiltonian bug crawling on a phonograph turntable See bug crawling on a phonograph turntable
Hamiltonian chaos See chaos in
Hamiltonian charged particle in electric and magnetic fields 192
Hamiltonian double pendulum, exact See double pendulum exact
Hamiltonian dynamics 175—184 197—198
Hamiltonian dynamics, in accelerated systems 190—193
Hamiltonian invariance See invariance Hamiitonian
Hamiltonian particle on a parabolic wire See particle on a parabolic wire Hamiltonian
Hamiltonian relativistic See relativistic Hamiltonian
Hamiltonian simple harmonic oscillator 88 182
Hamiltonian spherical pendulum See spherical pendulum Hamiltonian
handedness 456
Harmonic analysis 402—404
Harmonic oscillations 383
Hausdorf dtmensiun See dimension Hausdorff
Heavy symmetric top See symmetric top heavy
Heliocentric 130—132 317
Henon — Heiles Hamiltonian (prob) 378 478
Hermaitian matrices 337
Herpolhode 308 311—3l2
Heteroclinic point 447
Heteroclinic tangle 448
Hill equation 383 389—395 409 411
Hill G.W. 389
Hinparchus of Rhodes 317
Homoclinic constants See constraints holonomic
Homoclinic point 447
Homoclinic tangle 446—448
Homogenous differential equation See differential equation
Hooke's law 154
Hooke, Robert 132
Hubble telescope 155
Hurricanes 253 271—272 281
Huygens, C. 87 125 480
Hyakutake 163
Hyperbola 144 150
Hyperbolic fixed points See fixed paints hyperbolic 145 150—154 164
Hyperbolic fixed points, attractive force 150—151 153
Hyperbolic fixed points, repulsive force 150—154
Hyperplane, three-dimensional 429
Hysteresis 402 408—409
Ice ages 323
Ice cream cone rolling on a table 257—259
Identity matrix 262
Identity transformation See transformations identity
Ignorable coordinates 22—23 133 226
Impact parameter (prob) 165
Impulse force 99
Impulse force, arbitrary force as superposition of 104—105
Impulse force, response of oscillator to 100—101
Inclination 472—473
Inclined plane, example 1—7
Incompressible fluid 188
Index of refraction (prob) See refractive index (prob)
Inertia ellipsoid See ellipsoid inertia
Inertia tensor 283 286—291 339 327—328
Inertia tensor, dumbbell 290—291
Inertial reference frame 20 252 323—324 494 502 535
Infinitesimal rotation See rotation infinitesimal
Infinity, orders of 465
Inhomogenous differential equation See differential equation
Initial conditions 7—8 89
Instability 392
Instability, dynamical 383 386
Instantaneous angular velocity See angular velocity
Instantaneous axis of rotation See rotation axis
Instantaneous rest frame 526—527 535—536
Integrable 425 447—448 451—452
Integrable systems 207 235—237
Intermittency 457
Invariable line 308—3O9
Invariable plane 308
Invariance 28—29 (prob)
Invariance theorems See Lorentz invariant invariance
Invariance, Hamiltonian 211
Invariance, Lagrangian 171 173 209
Invariance, rotational 170—172
Invariance, transformation See transformation invariance
Invariance, translational 135—136
Invariant tori 237—239 424 431—433 435
Invariants, adiabatic See adiabatic invariants
Invariants, Lorentz See Lorentz invariant
Inverse square force 134
Invertible mapping 55
Involution 235—236
Irrational winding number See winding number irrational
Irregular motion 425 447 451
Iteration methods 384 405
Jacobian 203 249—251 432 443—444 452 454 241
Jacobian of Lorentz transformation 501
Jupiter See solar system stability
Jupiter, perturbation effects See asteroid perturbed
KAM barriers 451
Kam theorem 435—439
KAM tori 433—439 448 451 469
Kepler ellipses, precession of (prob) 420—422
Kepler orbit (prob) 413
Kepler problem 130—133 141—150 196 226 228
Kepler problem, perturbation of 384—388
Kepler's equation, eccentric anamoly 149
Kepler's laws 111—132 139—140 147
Kepler, I. 131—132
Kinematics 252
kinetic energy 127 328
Kinetic energy, asymmetric top See asymmetric top kinetic
Kinetic energy, block on inclined plane 4
Kinetic energy, function of both coordinates and velocities 16—17
Kinetic energy, matrix, Taylor series near equilibrium 350
Kinetic energy, moving constraints, bead on rotating wire example 7—9
Kinetic energy, relativiatic change 515—516
Kinetic energy, rigid body 284—286
Kinetic energy, rotational 285—287
Kinetic energy, rotational, symmetric top See symmetric top rotational
Kinetic energy, sliding ladder example 16
Kinetic energy, total 2S5
Kinetic energy, translational 285
Kinetic momentum 538—539
Kirkwood 469
Kirkwood gap 469—470
Kohlrausch 493
Kolmogorov See KAM theorem
Kovalevskaya, S.V. 451
Kronecker delta 286 307
Lagrange multipliers 56—65 73
Lagrange multipliers, chain example 61
Lagrange multipliers, for problems with explicit holonomic constraints 57—58
Lagrange multipliers, linear pendulum example 58—59
Lagrange multipliers, nonintegrable nonholonomic constraints, penny example 62—64
Lagrange, Joseph Louis 1 23 86
Lagrangian 1 19 51 54—55 83-S6 209 128 30—34 199—200
Lagrangian, bus crawling on a phonograph turntable See bug crawling on a phonograph turntable
Lagrangian, cannonball See cannonball
Lagrangian, central force See central force
Lagrangian, central force, spherical polar coordinates 138
Lagrangian, charged particle in electric and magnetic fields 192
Lagrangian, equation of motion 19
Lagrangian, Foucault pendulum See Foucault pendulum
Lagrangian, heavy symmetric top See symmetric top heavy Lagrangian
Lagrangian, in center of mass frame 1 17
Lagrangian, invariance See invariance Lagrangian
Lagrangian, linear pendulum See pendulum linear
Lagrangian, matrix form 351
Lagrangian, mechanics, relativists See relativistic Lagrangian mechanics
Lagrangian, momentum space See momentum space Lagrangian
Lagrangian, nonlinear pendulum See pendulum nonlinear
Lagrangian, normal coordinates 359
Lagrangian, penny See penny
Lagrangian, simple harmonic oscillator 88
Lao-Tze 437
Laplace 423 468
Laplace — Rungt — Lerra vector (prob) 196
Larmor frequency 193
Larmor's Theorem 192—193
Laskar, J. 471—474
Least action See Hamilton's Principle
Legendre transformations 175—180 211 213 197
Leibnitz 45 75
Length contraction See Lorentz contraction
Lenz vector 228
LHC 452
Libration, of pendulum See pendulum nonlinear libration
Lie derivative 236
Light cone 522
Light pulse, electric field transformation law See transformation law electric
Light wave energy, transformation law See transformation law energy
Light, bending (prob) 68—69
Light, emitted by atom 514—517
Light, minimal optical path 55
Light, speed of See speed of light
Lighthill, Sir James 474
Lindstedt — Poincare perturbation theory 384 398—401 419—420
Linear differential equation See differential equation
Linear linearizing 383 385—386
linear oscillator See oscillator simple
Linear pendulum See pendulum linear
Linear system 343
Linearly accelerated reference frames See reference frames linearly
Liouville's theorem 184—189 202—204 250 391 444 449 452
Ðåêëàìà