Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Hendrik Wade Bode — Network Analysis and Feedback Amplifier Design
Hendrik Wade Bode — Network Analysis and Feedback Amplifier Design



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Network Analysis and Feedback Amplifier Design

Àâòîð: Hendrik Wade Bode

Àííîòàöèÿ:

This book was originally written as an informal mimeographed text for one of the so-called " Out-of-Hour " courses at Bell Telephone Laboratories. The bulk of the material was prepared in 1938 and 1939 and was given in course form to my colleagues there in the winters of 1939—40 and 1940-41. During the war, however, the text has also been supplied as a reference work to a considerable number of other laboratories engaged in war research. The demand for the text on this basis was unexpectedly heavy and quickly exhausted the original supply of mimeographed copies. It has consequently been decided to make the text more widely available through regular channels of publication.


ßçûê: en

Ðóáðèêà: Òåõíîëîãèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: Twelfth printing

Ãîä èçäàíèÿ: 1975

Êîëè÷åñòâî ñòðàíèö: 577

Äîáàâëåíà â êàòàëîã: 06.08.2009

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Loop gain      49
Loop phase characteristic      see “Loop cut-off characteristic”
Loop transmission      45—49 495
Loop transmission characteristic      386 389
Loop transmission characteristic, gain and phase shift components      401 498
Loop, closed      3
Loss and phase reduction in four-terminal networks      236—239
Low-pass equivalent amplifier      503 505
Low-pass filter of constant-k type      411 424 428
Low-pass filter of m-derived type      412 429
Low-pass to band-pass transformation      418
Low-pass type of amplifier      453—454 489—502
Lower cut-off characteristic for broad-band amplifier      509—517
Lower cut-off characteristic, adjustment of low frequency elements for      510—517
Lower cut-off characteristic, reciprocal frequency transformations for      509
Maxima and minima of analytic functions      169 224 232
Maximum available feedback      464—468 471 475 485 495—496
Maximum available reduction for circuit loss      476—479
Maximum available reduction for excess phase      484—485
Maximum available reduction, gain and phase margins      467—468 495—497
Maximum available reduction, inadequate low frequency selectivity      507
Maximum available reduction, small number of tubes      478—480 496
Maximum phase shift below cut-off      288—289
Maximum power      364—365
Maximum rate of decrease of $\mu\beta$      289
Mead, S.P.      241
mesh      53
Mesh analysis      1 15—17
Mesh analysis with reference to complete amplifier      44
Mesh equations      1 8 10 31 44 48
Mesh equations for a passive circuit      4—5
Mesh equations for an active circuit      6—7
Mesh equations, steady-state solution of      7—8
Mesh system, multi-      20 22
Mid-series image impedance of constant-k type filter      326—327 373
Mid-series image impedance of m-derived type filter      373
Mid-shunt terminated low-pass constant-k type filter      326
Minimum attenuation structure      236 247
Minimum conductance network      172 185
Minimum loss structure      236 247
Minimum loss transfer function      261 273
Minimum phase condition      117 301 365
Minimum phase shift networks      230 238 242—244 247 305 309 322 505
Minimum phase shift networks of bridged-T type      243 273—274
Minimum phase shift networks of ladder type with inductive coupling      243
Minimum phase shift networks of lattice type      243
Minimum phase shift networks of unilateral vacuum tubes with ladder interstages      243
Minimum phase shift networks, definition      121 242
Minimum phase shift transfer functions      249 251 261 263 274
Minimum reactance definition      175
Minimum reactance driving-point impedance      123
Minimum reactance filter characteristic      374
Minimum reactance network      184 247 249 377 397 424
Minimum resistance network      183 185 247
Minimum resistance network, definition      172
Minimum susceptance network      184
Minimum susceptance network, definition      175
Minimum susceptance network, driving-point impedance      123
Minors, symmetrical and unsymmetrical      113
Modulation distortion, reduction by feedback      79—80 390 494 504
Modulator      43 490 493—495
Multi-stage $\mu$-circuit gain allocation      420
Multiple loop feedback amplifiers      41—43 45 49 56 83
Multiple loop feedback amplifiers, illustrative analysis of      95—102
Multiple loop feedback amplifiers, stability criteria for      157—162
Multiplex radio transmitter      493—498
Mutual impedance of a vacuum tube      6—7
Mutual inductance      185
Negative elements      106
Negative envelope delay      245
Negative impedance devices      134
Negative impedance due to positive inverse termination      188
Negative line      245
Negative loss      244 288 298
Negative phase correcting section      245
Negative resistances      185—188 244—245 248
Network characteristics, variations of, produced by changes in a single element      223—225
Network functions, admissible      123—125
Network functions, conjugacy conditions for      106
Network functions, definition of      105
Network functions, even and odd symmetry of components of      106
Network functions, parameters      227—230
Network functions, physically realizable      108
Network functions, real and imaginary components of      see “Relations between”
Network functions, requirements of, for stable networks      120—123
networks      see “Circuits”
Networks of pure reactances      177—182
Networks with any two kinds of elements      214
Networks with equal phase shifts      263—264
Networks, complementary      199—200
Networks, equivalent to the lattice      266—270
Networks, inverse      196—199
Nodal analysis      7 24
Nodal analysis of interstage      403—404
Nodal analysis with reference to complete amplifier      44
Nodal analysis, mesh and      15—17
Nodal equations      1 31 44 48
Nodal equations for a passive circuit      10—13
Nodal equations for an active circuit      13—15
Node      1 53
Node, ground      12
Noise generator, extraneous      34 80 491
Non-feedback amplifier      34 44 361
Non-linear distortion      33
Non-linear distortion in $\mu$-circuit      34
Non-linear distortion reduction      42 79—80
Non-minimum phase or reactance networks      482 505
Non-minimum phase or reactance networks, advantage of      277
Norton, E.L.      378 408
Number of stages, choice of      497 see
Number of zeros and poles of a function within a contour      149—151
Nyquist diagram method of determining stability      138 154—158 174 242
Nyquist plot of T      193—195 288—290 475—476 485
Nyquist, H.      151 241
Nyquist’s criterion for driving-point and transfer immittances      165—167
Nyquist’s criterion for single and multiple loop cases      151—162
Nyquist’s criterion for stability      137 276 278
Nyquist’s criterion, extensions of      164
Och, H.G.      489
Open-circuit stable networks      19 189—191 199 203 206 227 279
Optimum effect of taking a fraction, $\lambda$, of      478 496
Optimum effect, rule of thumb for      479
Optimum number of stages in a feedback amplifier      478—480 493
Optional phase characteristics      239 243
Orthogonality of real and imaginary components of network functions      296
Over-all $\mu\beta$ characteristic      502
Over-all feedback loop design characteristics, basic      410
Over-all loop cut-off characteristic      see “Loop cut-off characteristics”
Over-all low-frequency gain and phase characteristics      516
Over-all phase characteristic of complete transmission system      309—312
p-plane      24
Parallel combination of $f_a$ and $f_p$      484—485
Parasitic capacity in equalizers      283—285
Parasitic capacity in input and output circuits      365 371—374 377 388 390 400
Parasitic capacity in interstages      404 406 411—415 429 431 464
Parasitic capacity in limiting feedback loop      290
Parasitic capacity in local feedback circuits      283—285
Parasitic capacity, grid-cathode      45—46
Parasitic capacity, grid-plate      42 46
Parasitic capacity, plate-cathode      45
Parasitic dissipation      216—222 369 371 377 503
Parasitic dissipation in distortionless media      222—223
Parasitic dissipation, displacement of critical frequencies by      244
Parasitic dissipation, formulae for effects of      220
Parasitic dissipation, relation to selectivity      400
Parasitic elements      213 360—361 365 369 371—373
Parasitic elements at high frequencies      454 469—472 486
Parasitic elements, conservation of band width principle in relation to      211—214
Parasitic impedance, grid-cathode      56
Parasitic impedance, plate-cathode      56
Partial fraction expansion of dissipative passive impedance      200—203
Partial product expansion of a general transfer impedance      250—254
Partial product expansion of an illustrative transfer function      254—258
Passive circuits, branch equations for      1—4
Passive circuits, mesh equations for      4—5
Passive circuits, nodal equations for      10—13
Passive driving-point impedance function, minimum resistance or conductance, types of      172
Passive driving-point impedance function, physical representation of      170—185
Passive driving-point impedance function, reactance or susceptance, types of      123 175
Passive driving-point impedance function, reduction of reactance or susceptance of      173—177
Passive driving-point impedance function, resistance or conductance of      170—173
Passive elements      7
Passive ladder network      243
Passive network functions      see “Physically realizable network functions”
Passive network parameters      227—230
Passive transfer function, loss and phase reduction of      236—238
Passive transfer function, minimum phase shift      242—244
Passive transfer function, physical representation of      226—244
Passive transmission characteristic      387 see
Path of integration, relation between integral and      141—144
Percival, W.S.      408 428
Perkins, E.H.      489
Peterson, E.      151
Phase area      287 401
Phase area law in amplifier design      287—291 420
Phase area spread over broad region      402
Phase characteristic as related to attenuation slope      313
Phase characteristic for a prescribed attenuation characteristic      305—309 314—318
Phase characteristic of constant slope      315
Phase characteristic of semi-infinite constant slope      316
Phase characteristic on an arithmetic frequency scale      318—319
Phase characteristic with a discontinuity      315
Phase characteristic, attenuation characteristic for a given      320—322
Phase characteristics      498 ff
Phase characteristics of semi-infinite slopes and finite line segments      338
Phase characteristics, loss and, prescribed in different frequency ranges      328—331
Phase characteristics, loss and, the relation between      312—314
Phase characteristics, optional      239
Phase control of interstage, relation of amount of final gain to      419
Phase correctors      239 264—265 294
Phase correctors, negative      245
Phase displacement for minimum phase shift transfer impedance      242
Phase distortion in selective systems      305 317—318
Phase equalization      305 317—318 322
Phase equalization of a broad band system      309—312
Phase integral      286—288 419—420 472
Phase margin      453—457 464 465 475 479 495—496
Phase margin, plot as an aid to design      524—527
Phase reducfion      226 236
Phase reversal      7 32 48 186 508
Phase shift      7 22 28 32 39—40 48 79 249 474
Phase shift, compensation for      479—480
Phase shift, minimum      see “Minimum phase condition”
Phase shift, proportional to rate of change of gain      454
Phase shifts, networks with equal      263—264
Phase systems, linear      322—327
Phase systems, linear, with prescribed discrimination      331—334
Phase, sign of      409
physical elements      105
Physical network characteristics at real frequencies, general restrictions on      276—302 see
Physical realizability      see “Physically realizable network functions”
Physical realizability, design methods and the problem of      103—105
Physical representation of active transfer impedances      244—246
Physical representation of driving-point impedances      170—195
Physical representation of driving-point impedances by Brune networks      182—185
Physical representation of general driving-point functions      188—191 246—248
Physical representation of transfer impedance functions      226—248
Physical representation of transfer impedance functions by lattices      230—235 251—253
Physical sinusoid      8
Physical sinusoid, exponential representation of      19—22
Physical transformer representation      374—375
Physical validity of complex frequencies      28—30
Physically realizable network functions      103—136 see
Physically realizable network functions, definition of      108
Physically realizable network functions, design methods for      103—105
Physically realizable network functions, energy and impedance relations in      125—131
Physically realizable network functions, expressions exemplifying      123—125
Physically realizable network functions, requirements for      106—108 120—123 132—136
Physically realizable network functions, requirements on driving-point functions      121 188—191
Physically realizable network functions, zeros of the determinants for      109—120
Piermont, J.      137
Plate      1 6 14
Plate, impedance      6
Plate, resistance      16
Plate, supply circuits      510—511
Plate-cathode admittance      284
Plate-grid transmission, computation of      91—95
Poles      144—149 152 172—174 188—189 194—195 232 236—239 249 255 260 262 279 296 300 306 332 365 374 409
Poles at infinity      177 183
Poles of capacity-resistance and inductance-resistance networks      216
Poles, complex      250 252
Poles, physical representation of      202—203
Poles, relation of, to minimum phase condition      236—238
Poles, representation of, by partial fractions      200
Poles, single real      251—252
Positive definite energy functions      134
Positive definite quadratic forms      128
Positive elements      134
Positive real function      171 190
Pre-equalization or $\beta$-circult equalization in amplifier design      230
Principal value of an integral      306 332 409
Principle of conservation of band width      211—214
Principle of duality      13
Principle of reciprocity      6 73 83—84 229 389
Principle of superposition      20
Pure teacrance networks      177—180
Q in band-pass structures      508—509
Q in damped tuned circuits      469
Q in low-pass equivalent coils and condensers      503
Q in resonant and anti-resonant circuits      503
Q of transformer leakage inductance      401
Q, relation of reflection coefficient to      367—368
Q, relation of transmission characteristic to      368
Radio transmitters with feedback, illustrative designs for      493—498 504—509
Rate of cut-off      311
Rational functions      25
Rational functions, specifications of, by zeros and poles      105
Reactance integral      286—288
Reactance, pure, properties of networks of      177—182
Reactance, reduction in interstage networks      176—177
Reactance, reduction of passive impedances      173—177 226 236
Reactance, residual network after      176
Reactance, slope      181
Reactance-resistance ratio, Q      see “Q”
Real and imaginary characteristics approximated by straight lines      337
Real and imaginary components of network functions      see “Relations between”
Real and imaginary components of network functions, graphical computation of      337—345
Real and imaginary elements      106
Real and imaginary frequencies      131 137
Reciprocal frequency plot for lower cut-off characteristic      509
Reciprocity      1 6 14 127 132
Reconstruction of impedances, from a knowledge of either component      203—205 261—263
Reduction factor      44
Reduction in effect of tube variations      33 46—47
Reduction of distortion by feedback      34 79—80
Reduction-in-gain integral      487
Reduction-in-gain integral, distribution of area in      488
Reference condition of the circuit, plate-grid transmission for      91—92
Reference condition of the circuit, simplified computation of      88—91
Reference feedback as a balanced bridge      83—84
Reference value of a tube      78—79
Reference value of an element      60—65
Reference, return difference for any      49
Reflection coefficient      37 73 75 360 364—367
Reflection coefficient, constant, in prescribed range      367
Reflection coefficient, formula      364
Reflection coefficient, illustrative design      378—383
Reflection coefficient, relation of, to Q of terminating impedance      367—368
Reflection crosstalk      499
Regeneration and degeneration in a general feedback circuit      285—286
1 2 3 4 5
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå