|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Hendrik Wade Bode — Network Analysis and Feedback Amplifier Design |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Loop gain 49
Loop phase characteristic see “Loop cut-off characteristic”
Loop transmission 45—49 495
Loop transmission characteristic 386 389
Loop transmission characteristic, gain and phase shift components 401 498
Loop, closed 3
Loss and phase reduction in four-terminal networks 236—239
Low-pass equivalent amplifier 503 505
Low-pass filter of constant-k type 411 424 428
Low-pass filter of m-derived type 412 429
Low-pass to band-pass transformation 418
Low-pass type of amplifier 453—454 489—502
Lower cut-off characteristic for broad-band amplifier 509—517
Lower cut-off characteristic, adjustment of low frequency elements for 510—517
Lower cut-off characteristic, reciprocal frequency transformations for 509
Maxima and minima of analytic functions 169 224 232
Maximum available feedback 464—468 471 475 485 495—496
Maximum available reduction for circuit loss 476—479
Maximum available reduction for excess phase 484—485
Maximum available reduction, gain and phase margins 467—468 495—497
Maximum available reduction, inadequate low frequency selectivity 507
Maximum available reduction, small number of tubes 478—480 496
Maximum phase shift below cut-off 288—289
Maximum power 364—365
Maximum rate of decrease of 289
Mead, S.P. 241
mesh 53
Mesh analysis 1 15—17
Mesh analysis with reference to complete amplifier 44
Mesh equations 1 8 10 31 44 48
Mesh equations for a passive circuit 4—5
Mesh equations for an active circuit 6—7
Mesh equations, steady-state solution of 7—8
Mesh system, multi- 20 22
Mid-series image impedance of constant-k type filter 326—327 373
Mid-series image impedance of m-derived type filter 373
Mid-shunt terminated low-pass constant-k type filter 326
Minimum attenuation structure 236 247
Minimum conductance network 172 185
Minimum loss structure 236 247
Minimum loss transfer function 261 273
Minimum phase condition 117 301 365
Minimum phase shift networks 230 238 242—244 247 305 309 322 505
Minimum phase shift networks of bridged-T type 243 273—274
Minimum phase shift networks of ladder type with inductive coupling 243
Minimum phase shift networks of lattice type 243
Minimum phase shift networks of unilateral vacuum tubes with ladder interstages 243
Minimum phase shift networks, definition 121 242
Minimum phase shift transfer functions 249 251 261 263 274
Minimum reactance definition 175
Minimum reactance driving-point impedance 123
Minimum reactance filter characteristic 374
Minimum reactance network 184 247 249 377 397 424
Minimum resistance network 183 185 247
Minimum resistance network, definition 172
Minimum susceptance network 184
Minimum susceptance network, definition 175
Minimum susceptance network, driving-point impedance 123
Minors, symmetrical and unsymmetrical 113
Modulation distortion, reduction by feedback 79—80 390 494 504
Modulator 43 490 493—495
Multi-stage -circuit gain allocation 420
Multiple loop feedback amplifiers 41—43 45 49 56 83
Multiple loop feedback amplifiers, illustrative analysis of 95—102
Multiple loop feedback amplifiers, stability criteria for 157—162
Multiplex radio transmitter 493—498
Mutual impedance of a vacuum tube 6—7
Mutual inductance 185
Negative elements 106
Negative envelope delay 245
Negative impedance devices 134
Negative impedance due to positive inverse termination 188
Negative line 245
Negative loss 244 288 298
Negative phase correcting section 245
Negative resistances 185—188 244—245 248
Network characteristics, variations of, produced by changes in a single element 223—225
Network functions, admissible 123—125
Network functions, conjugacy conditions for 106
Network functions, definition of 105
Network functions, even and odd symmetry of components of 106
Network functions, parameters 227—230
Network functions, physically realizable 108
Network functions, real and imaginary components of see “Relations between”
Network functions, requirements of, for stable networks 120—123
networks see “Circuits”
Networks of pure reactances 177—182
Networks with any two kinds of elements 214
Networks with equal phase shifts 263—264
Networks, complementary 199—200
Networks, equivalent to the lattice 266—270
Networks, inverse 196—199
Nodal analysis 7 24
Nodal analysis of interstage 403—404
Nodal analysis with reference to complete amplifier 44
Nodal analysis, mesh and 15—17
Nodal equations 1 31 44 48
Nodal equations for a passive circuit 10—13
Nodal equations for an active circuit 13—15
Node 1 53
Node, ground 12
Noise generator, extraneous 34 80 491
Non-feedback amplifier 34 44 361
Non-linear distortion 33
Non-linear distortion in -circuit 34
Non-linear distortion reduction 42 79—80
Non-minimum phase or reactance networks 482 505
Non-minimum phase or reactance networks, advantage of 277
Norton, E.L. 378 408
Number of stages, choice of 497 see
Number of zeros and poles of a function within a contour 149—151
Nyquist diagram method of determining stability 138 154—158 174 242
Nyquist plot of T 193—195 288—290 475—476 485
Nyquist, H. 151 241
Nyquist’s criterion for driving-point and transfer immittances 165—167
Nyquist’s criterion for single and multiple loop cases 151—162
Nyquist’s criterion for stability 137 276 278
Nyquist’s criterion, extensions of 164
Och, H.G. 489
Open-circuit stable networks 19 189—191 199 203 206 227 279
Optimum effect of taking a fraction, , of 478 496
Optimum effect, rule of thumb for 479
Optimum number of stages in a feedback amplifier 478—480 493
Optional phase characteristics 239 243
Orthogonality of real and imaginary components of network functions 296
Over-all characteristic 502
Over-all feedback loop design characteristics, basic 410
Over-all loop cut-off characteristic see “Loop cut-off characteristics”
Over-all low-frequency gain and phase characteristics 516
Over-all phase characteristic of complete transmission system 309—312
p-plane 24
Parallel combination of and 484—485
Parasitic capacity in equalizers 283—285
Parasitic capacity in input and output circuits 365 371—374 377 388 390 400
Parasitic capacity in interstages 404 406 411—415 429 431 464
Parasitic capacity in limiting feedback loop 290
Parasitic capacity in local feedback circuits 283—285
Parasitic capacity, grid-cathode 45—46
Parasitic capacity, grid-plate 42 46
Parasitic capacity, plate-cathode 45
Parasitic dissipation 216—222 369 371 377 503
Parasitic dissipation in distortionless media 222—223
Parasitic dissipation, displacement of critical frequencies by 244
Parasitic dissipation, formulae for effects of 220
Parasitic dissipation, relation to selectivity 400
Parasitic elements 213 360—361 365 369 371—373
Parasitic elements at high frequencies 454 469—472 486
Parasitic elements, conservation of band width principle in relation to 211—214
Parasitic impedance, grid-cathode 56
Parasitic impedance, plate-cathode 56
| Partial fraction expansion of dissipative passive impedance 200—203
Partial product expansion of a general transfer impedance 250—254
Partial product expansion of an illustrative transfer function 254—258
Passive circuits, branch equations for 1—4
Passive circuits, mesh equations for 4—5
Passive circuits, nodal equations for 10—13
Passive driving-point impedance function, minimum resistance or conductance, types of 172
Passive driving-point impedance function, physical representation of 170—185
Passive driving-point impedance function, reactance or susceptance, types of 123 175
Passive driving-point impedance function, reduction of reactance or susceptance of 173—177
Passive driving-point impedance function, resistance or conductance of 170—173
Passive elements 7
Passive ladder network 243
Passive network functions see “Physically realizable network functions”
Passive network parameters 227—230
Passive transfer function, loss and phase reduction of 236—238
Passive transfer function, minimum phase shift 242—244
Passive transfer function, physical representation of 226—244
Passive transmission characteristic 387 see
Path of integration, relation between integral and 141—144
Percival, W.S. 408 428
Perkins, E.H. 489
Peterson, E. 151
Phase area 287 401
Phase area law in amplifier design 287—291 420
Phase area spread over broad region 402
Phase characteristic as related to attenuation slope 313
Phase characteristic for a prescribed attenuation characteristic 305—309 314—318
Phase characteristic of constant slope 315
Phase characteristic of semi-infinite constant slope 316
Phase characteristic on an arithmetic frequency scale 318—319
Phase characteristic with a discontinuity 315
Phase characteristic, attenuation characteristic for a given 320—322
Phase characteristics 498 ff
Phase characteristics of semi-infinite slopes and finite line segments 338
Phase characteristics, loss and, prescribed in different frequency ranges 328—331
Phase characteristics, loss and, the relation between 312—314
Phase characteristics, optional 239
Phase control of interstage, relation of amount of final gain to 419
Phase correctors 239 264—265 294
Phase correctors, negative 245
Phase displacement for minimum phase shift transfer impedance 242
Phase distortion in selective systems 305 317—318
Phase equalization 305 317—318 322
Phase equalization of a broad band system 309—312
Phase integral 286—288 419—420 472
Phase margin 453—457 464 465 475 479 495—496
Phase margin, plot as an aid to design 524—527
Phase reducfion 226 236
Phase reversal 7 32 48 186 508
Phase shift 7 22 28 32 39—40 48 79 249 474
Phase shift, compensation for 479—480
Phase shift, minimum see “Minimum phase condition”
Phase shift, proportional to rate of change of gain 454
Phase shifts, networks with equal 263—264
Phase systems, linear 322—327
Phase systems, linear, with prescribed discrimination 331—334
Phase, sign of 409
physical elements 105
Physical network characteristics at real frequencies, general restrictions on 276—302 see
Physical realizability see “Physically realizable network functions”
Physical realizability, design methods and the problem of 103—105
Physical representation of active transfer impedances 244—246
Physical representation of driving-point impedances 170—195
Physical representation of driving-point impedances by Brune networks 182—185
Physical representation of general driving-point functions 188—191 246—248
Physical representation of transfer impedance functions 226—248
Physical representation of transfer impedance functions by lattices 230—235 251—253
Physical sinusoid 8
Physical sinusoid, exponential representation of 19—22
Physical transformer representation 374—375
Physical validity of complex frequencies 28—30
Physically realizable network functions 103—136 see
Physically realizable network functions, definition of 108
Physically realizable network functions, design methods for 103—105
Physically realizable network functions, energy and impedance relations in 125—131
Physically realizable network functions, expressions exemplifying 123—125
Physically realizable network functions, requirements for 106—108 120—123 132—136
Physically realizable network functions, requirements on driving-point functions 121 188—191
Physically realizable network functions, zeros of the determinants for 109—120
Piermont, J. 137
Plate 1 6 14
Plate, impedance 6
Plate, resistance 16
Plate, supply circuits 510—511
Plate-cathode admittance 284
Plate-grid transmission, computation of 91—95
Poles 144—149 152 172—174 188—189 194—195 232 236—239 249 255 260 262 279 296 300 306 332 365 374 409
Poles at infinity 177 183
Poles of capacity-resistance and inductance-resistance networks 216
Poles, complex 250 252
Poles, physical representation of 202—203
Poles, relation of, to minimum phase condition 236—238
Poles, representation of, by partial fractions 200
Poles, single real 251—252
Positive definite energy functions 134
Positive definite quadratic forms 128
Positive elements 134
Positive real function 171 190
Pre-equalization or -circult equalization in amplifier design 230
Principal value of an integral 306 332 409
Principle of conservation of band width 211—214
Principle of duality 13
Principle of reciprocity 6 73 83—84 229 389
Principle of superposition 20
Pure teacrance networks 177—180
Q in band-pass structures 508—509
Q in damped tuned circuits 469
Q in low-pass equivalent coils and condensers 503
Q in resonant and anti-resonant circuits 503
Q of transformer leakage inductance 401
Q, relation of reflection coefficient to 367—368
Q, relation of transmission characteristic to 368
Radio transmitters with feedback, illustrative designs for 493—498 504—509
Rate of cut-off 311
Rational functions 25
Rational functions, specifications of, by zeros and poles 105
Reactance integral 286—288
Reactance, pure, properties of networks of 177—182
Reactance, reduction in interstage networks 176—177
Reactance, reduction of passive impedances 173—177 226 236
Reactance, residual network after 176
Reactance, slope 181
Reactance-resistance ratio, Q see “Q”
Real and imaginary characteristics approximated by straight lines 337
Real and imaginary components of network functions see “Relations between”
Real and imaginary components of network functions, graphical computation of 337—345
Real and imaginary elements 106
Real and imaginary frequencies 131 137
Reciprocal frequency plot for lower cut-off characteristic 509
Reciprocity 1 6 14 127 132
Reconstruction of impedances, from a knowledge of either component 203—205 261—263
Reduction factor 44
Reduction in effect of tube variations 33 46—47
Reduction of distortion by feedback 34 79—80
Reduction-in-gain integral 487
Reduction-in-gain integral, distribution of area in 488
Reference condition of the circuit, plate-grid transmission for 91—92
Reference condition of the circuit, simplified computation of 88—91
Reference feedback as a balanced bridge 83—84
Reference value of a tube 78—79
Reference value of an element 60—65
Reference, return difference for any 49
Reflection coefficient 37 73 75 360 364—367
Reflection coefficient, constant, in prescribed range 367
Reflection coefficient, formula 364
Reflection coefficient, illustrative design 378—383
Reflection coefficient, relation of, to Q of terminating impedance 367—368
Reflection crosstalk 499
Regeneration and degeneration in a general feedback circuit 285—286
|
|
|
Ðåêëàìà |
|
|
|