Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Opechowski W. — Crystallographic and metacrystallographic groups
Opechowski W. — Crystallographic and metacrystallographic groups



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Crystallographic and metacrystallographic groups

Автор: Opechowski W.

Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1986

Количество страниц: 628

Добавлена в каталог: 19.06.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Symmetry group of a modulated point lattice      540
Symmetry group of a plane      161
Symmetry group of a point lattice      218
Symmetry group of a point set      191
Symmetry group of a simple crystal      299
Symmetry group of a static homogeneous electromagnetic field      T14.2
Symmetry group of an extended modulated point lattice      542 546 548
Symmetry group of the constitutive relations      397
Symmetry groups of vector functions constant in space and time      392 T14.2
Symmetry of electric and magnetic fields      N14.2
Symmetry operation      N7.3
Symmetry, higher      192
Symmetry, lower      192
Symmetry, opposite      193
Symmetry, some      192
Symmetry, the same      193
Symmorphic line group      325
Symmorphic space group      255 270 N9.3
Syngony      Npr
System of Bravais classes of lattice groups      239 240
System of Bravais classes of point lattices      239 240
System of Bravais flocks (= Bravais-flock systems) of arithmetic classes of finite integral matrix groups      239 240
System of geometric classes (= geometric-class system) of crystallographic groups of rotations      262 T6.2 T6.7
System of geometric classes of space groups (= ITC system)      278
System of lattice groups      239
System of point lattices      239
System of proper affine classes of Bravais space groups      239 240
System of proper arithmetic classes of Bravais groups      240
Systems of space groups, Bravais, = Bravais-flock systems of space groups      277
Systems of space groups, ITC, = systems of geometric classes of space groups      277
Systems of space groups, NWB, = systems of the third kind      278 279
t-dimensional lattice group of an n-dimensional Euclidean point space      195
T-subgroup of a space group      260 436 437
T-subgroups of the Bravais space group Cmmm      T9.2.1
T-supergroup of a space group      260
Tetragonal Bravais system of point lattices      T8.3
Tetragonal Bravais system of space groups      T9.2.2
Tetragonal geometric-class system of groups of rotations      T6.2 T6.5
Tetragonal group of proper rotations      155 T6.2 T6.5
Tetragonal point lattice, body-centred      244
Tetragonal point lattice, primitive      244
Tetrahedral group of proper rotations      155 T6.2 T6.5
Theorem on invariant vectors of a representation      139
Theorem on the direct product of representations of a group      145
Three-dimensional Euclidean point space (ordinary space)      87 101 148
Three-dimensional line group      315
Time (one-dimensional Euclidean point space)      87 101 165
Time group      165 529
Time inversion      165
Time-independent function      388
Time-inversion group      165
Time-inversion in quantum mechanics      531
Time-inversion operator      532
Time-translation group      165
Trace of a matrix      76
Transform of a permutation by another permutation      31 34
Transform of an element of a group      26
Transform of an element of a group by an automorphism of the group      45
Transformation of a set onto itself = permutation of a set      5 30
Transforming away the translational part of an affine transformation      119 151
Transition probability      521
Transitive group of permutations      39 68
Transitive relation      6
Transitive set      39
Translation component of a rigid motion      N4.4
Translation of an affine space      111 113
Translation subgroup of the affine group      111
Translation-equivalent subgroup = T-subgroup      260
Translational part of an affine transformation      113 117 128
Translational part of an isometry      117 128 N4.4
Transpose of a matrix      76
Triclinic Bravais system of point lattices      T8.3
Triclinic Bravais system of space groups      T9.2.2
Triclinic geometric-class system of groups of rotations      T6.2 T6.5
Triclinic groups of rotations      T6.2 T6.5
Triclinic ITC-system of space groups      T9.2.2
Triclinic point lattice      244
Trigonal Bravais system (= rhombohedral Bravais system) of point lattices      244 T8.3
Trigonal Bravais system of point lattices      T8.3
Trigonal Bravais system of space groups      T9.2.3
Trigonal geometric-class system of groups of rotations      T6.2 T6.5
Trigonal groups of rotations      T6.2 T6.5
Trigonal ITC-system (= rhombohedral ITC-system) of space groups      T9.2.3
Trigonal point lattice = rhombohedral point lattice      244
Trivial extension (= split extension) of a group      59
Trivial group      11 15
Trivial magnetic group      402
Trivial metacrystallographic group      352
Trivial representation of a group      24
Trivial spin group      506
Trivial subgroup      15
Two-colour group = black and white group      357 374
Two-colour group corresponding to a magnetic group      375 406
Two-dimensional Euclidean point space      162
Two-sided band group      331
Two-sided line group      331
Two-sided line strip      330
Type of point lattices = Bravais class of point lattices      N8.7
Type of space groups = space-group type      264
Unimodular matrix      79 109
Union of sets      4
Unit cell of a point lattice      210 N8.2
Unit cell of a point set generated by a line group      328
Unit cell of a simple crystal      292
Unit element (= identity element) of a group      10
Unit ray      519
Unit vector      520
Unitary group of a complex vector space      526
Unitary matrix      76
Unitary matrix group U(n)      77
Unitary transformations of a vector space      527
Unitary vector space      520
Unitary vector space associated with an atomic system      522
Unitary-antiunitary group of a complex vector space      527
Unprimed elements of a magnetic group      402
Unprimed elements of the Newton group      168
Unprimed subgroup of a magnetic group      405
Unprimed subgroup of a subgroup of the Newton group      168 169
Unprimed subgroup of the Newton group      168
V      88
V(n)      89
Vector      88
Vector addition      88
Vector functions      387 389
Vector group = spin group      354 359 503 504 505
Vector space      8
Vector space over a field      88
Vector space over the field $\mathbb C$ of complex numbers = complex vector space      88
Vector space over the field $\mathbb R$ of real numbers = real vector space      88
Vector space regarded as an Abelian group      88
Vector space, n-diinensional      89
Vector W-group      355
Vector-space component of a Euclidean point space      98
Vector-space component of an affine point space      92
Vector-valued functions: one-, two-, and three-dimensional      354 505 506
Vierergruppe = four-group      11 166
Voronoi domain = Voronoi polyhedron      N8.8
Wigner — Seitz cell      N8.8
Wigner's Theorem      N21.3
Wild automorphism of the field of complex numbers      52 523
Wreath product      57 355 383
Wyckoff $\mathbf F$-class      294 N10.2
Wyckoff class of simple crystals = Wyckoff position for a space group      293 294 295 T10.2
Wyckoff classification of simple crystals      293
Wyckoff letter      293
Wyckoff notation      293
Wyckoff position for a space group = Wyckoff class of simple crystals      295
Zassenhaus' algorithm      275
Zellengleiche Untergruppe = T-subgroup      261
Zero-vector = null-vector      88
1 2 3 4 5 6
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте