Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Verbeke G., Molenberghs G. — Linear Mixed Models for Longitudinal Data
Verbeke G., Molenberghs G. — Linear Mixed Models for Longitudinal Data



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Linear Mixed Models for Longitudinal Data

Àâòîðû: Verbeke G., Molenberghs G.

Àííîòàöèÿ:

This book provides a comprehensive treatment of linear mixed models for continuous longitudinal data. Next to model formulation, this book puts major emphasis on exploratory data analysis for all aspects of the model. Several variations to the conventional linear mixed model are discussed. Most analyses were done with the Mixed procedure of the SAS software package, however, other commercially available packages are discussed as well. Great care has been taken in presenting the data analyses in a software-independent fashion.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/Âåðîÿòíîñòü/Ñòàòèñòèêà è ïðèëîæåíèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2000

Êîëè÷åñòâî ñòðàíèö: 579

Äîáàâëåíà â êàòàëîã: 15.06.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Random effects, histogram      79 82
Random effects, homogeneity model      see “Homogeneity model”
Random effects, marginal testing      69 73 133 408 474
Random effects, mixture distribution      85 90 169 172
Random effects, model building      125—128 133
Random effects, normal quantile plot      79 89
Random effects, normality assumption      79 83—92 169 170
Random effects, preliminary      125—128 139 474
Random effects, random intercept      81 117 250 252 253 262 498 504
Random effects, random slope      252 262
Random effects, RANDOM statement      97
Random effects, scatter plot      79 82
Random effects, semi-variogram      144 148
Random effects, shrinkage      80 82 84 85
Random effects, t-test      79
Random effects, versus fixed effects      198—200
Random effects, versus serial correlation      149
RANDOM statement      97 117—119 259 260 267 446 488 500 501
RANDOM statement, versus REPEATED statement      117 119
RANDOM statement, “gcorr” option      98
RANDOM statement, “group=” option      103
RANDOM statement, “g” option      98 253
RANDOM statement, “nofullz” option      488
RANDOM statement, “solution” option      98
RANDOM statement, “subject=” option      97
RANDOM statement, “type=” option      98 104 118
RANDOM statement, “v=” option      98
RANDOM statement, “vcorr=” option      98
RANDOM statement, “vcorr” option      98 101
RANDOM statement, “v” option      98 101
Random-coefficient-based model      see “Missing data”
Random-intercepts model      25 68 117 118 120
Random-intercepts model, compound symmetry      see “Compound symmetry”
Random-intercepts model, empirical Bayes estimation (EB)      81
Random-intercepts model, semi-variogram      142 144
Random-intercepts model, shrinkage      81
Rat data      7—9
Rat data, efficiency      394
Rat data, inference fixed effects      67
Rat data, inference variance components      66—68
Rat data, information criteria      75
Rat data, linear mixed model      25
Rat data, local influence      307—312
Rat data, marginal versus hierarchical      52 67
Rat data, model misspecification      52
Rat data, power      393 394
Rat data, power distribution      397—104
Rat data, sensitivity analysis      307—312
Rat data, two-stage analysis      21 38
Rat data, variance function      53
REPEATED statement      98 117 119 251 252 259 261 267 446 488 500 501
REPEATED statement, versus RANDOM statement      117—119
REPEATED statement, “group=” option      103 245 359
REPEATED statement, “local=” option      483
REPEATED statement, “local” option      104 130
REPEATED statement, “r=” option      101 245
REPEATED statement, “rcorr=” option      101 245
REPEATED statement, “rcorr” option      101 243
REPEATED statement, “r” option      101 243
REPEATED statement, “subject=” option      100 446
REPEATED statement, “type=AR(l)” option      252
REPEATED statement, “type=” option      100 104 118 119 129 139 256 483 488
Residual covariance structure      see “Covariance structure”
Residuals      151 240
Residuals, covariance structure      160 163
Residuals, marginal      151
Residuals, mean structure      160 163
Residuals, ordinary least squares      32 34 53 125 136 139
Residuals, random effects      77 152
Residuals, subject-specific      145 151
Restricted maximum likelihood estimation (REML)      43—47 195
Restricted maximum likelihood estimation (REML), comparison with ML      46—48 139 199
Restricted maximum likelihood estimation (REML), error contrasts      43—46 63 75
Restricted maximum likelihood estimation (REML), fixed effects      45
Restricted maximum likelihood estimation (REML), justification      46 195
Restricted maximum likelihood estimation (REML), likelihood function      46
Restricted maximum likelihood estimation (REML), linear mixed model      44
Restricted maximum likelihood estimation (REML), linear regression      43 48
Restricted maximum likelihood estimation (REML), normal population      43 48
Restricted maximum likelihood estimation (REML), variance components      45
Ridge regression      146
Robust inference      see “Fixed effects”
Sample-size calculations      see “Design considerations”
Sampling framework, naive      377 380 382
Sampling framework, unconditional      377 382
Sandwich estimator      see “Fixed effects”
SAS data set      95
SAS macro      38 162 195 240 332 352 353 359 361 374
Satterthwaite method      see “Degrees of freedom”
Saturated mean structure      see “Mean structure”
Schwarz information criterion (SBC)      see “Information criteria”
selection model      216 231—273 278—279 295—330 333 448 454
Selection model, Heckman's model      296
Semi-variogram      141—148 270 271 419
Semi-variogram, random effects      144—148
Semi-variogram, random intercepts      142—144 449 452 473
Sensitivity      236—238 270 297
Sensitivity analysis      213 270 277—279 292 448—470
Sensitivity analysis, pattern-mixture model      331—374
Sensitivity analysis, selection model      295 330
Separability condition      see “Missing data”
Serial correlation      26—28 128—132 135—150
Serial correlation, check for      136—137
Serial correlation, exponential      28 100 139 142 474
Serial correlation, flexible models      137—140
Serial correlation, fractional polynomials      137—139
Serial correlation, Gaussian      28 100 129 139 142 416 474
Serial correlation, versus random effects      149
Shapiro — Wilk test      136 179 181 186
Shrinkage      see “Bayesian methods”
Simplex algorithm      232 235 240
SPlus      493—513
SPlus, comparison with MLwiN      497
SPlus, LME function      493—497
SPlus, LME function, “cluster” argument      494
SPlus, LME function, “covariate.transformation” argument      494
SPlus, LME function, “est.method” argument      495
SPlus, LME function, “fixed” argument      494
SPlus, LME function, “random” argument      494
SPlus, LME function, “re.block” argument      494
SPlus, LME function, “re.paramtr” argument      494
SPlus, LME function, “serial” argument      494
SPlus, LME function, “var.covariate” argument      494
SPlus, LME function, “var.estimate” argument      494
SPlus, LME function, “var.function” argument      494
SPlus, LME.FORMULA function      see “SPlus LME
SPlus, NMLE function      493
SPlus, OSWALD      see “OSWALD”
Starting values      131
Stationarity      see “Covariance structure”
Stratification, posthoc      366
Subject-specific profiles, alignment      448—451
Subject-specific profiles, coefficient of multiple determination      35—38 40
Subject-specific profiles, exploration      35—10 205 288 307
Subject-specific profiles, F test      37—10
Subject-specific profiles, goodness-of-fit      35—37
Summary statistics      23
Surrogate endpoints      420—446
Sweep operator      389
t-distribution      314 318
t-distribution, degrees of freedom      318
t-test, degrees of freedom      57 112
t-test, fixed effects      see “Fixed effects”
t-test, random effects      see “Random effects”
Time series      28
Time-independent covariate      125 194
Time-varying covariate      95 120 125 190
Tobit model      231—232
Toenail data      9 10 227—229 233—238
Toenail data, MAR analysis      233—234
Toenail data, MCAR analysis      227 229
Toenail data, MNAR analysis      234—238
Toenail data, pattern-mixture model      281—287
toeplitz      see “Covariance structure”
Two-stage analysis      20—23 123 133 231 429—430
Two-stage analysis, stage 1      20 35—40 429
Two-stage analysis, stage 2      20 430
Uncertainty, modeling      336
Uncertainty, sampling      336
Unstructured covariance      see “Covariance structure”
Untestable assumptions      236 270 281 297 329 334 342 498
Variance components      41 407 415
Variance components, estimation problems      50—52
Variance components, inference      64 73 133
Variance components, local influence      see “Local influence”
Variance components, LR test      65 69—73 106 392 408 474
Variance components, maximum likelihood      42
Variance components, negative      54 68
Variance components, restricted maximum likelihood      45
Variance components, Wald test      64 107
VARIANCE function      see “Covariance structure”
Variogram      see “Semi-variogram”
Vorozole study      15 201—207 270—273
Vorozole study, correlation structure      34
Vorozole study, mean structure      32
Vorozole study, pattern-mixture model      287—291
Vorozole study, pattern-mixture model, sensitivity analysis      352—373
Vorozole study, selection model      270 273
Vorozole study, semi-variogram      144
Vorozole study, variance function      33
Wald test      382
Wald test, fixed effects      see “Fixed effects”
Wald test, pattern-mixture model      286
Wald test, scaled      57
Wald test, variance components      see “Variance components”
WHERE statement      119
Wilk's Lambda test      119
Within-imputation variance      337
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå