Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Verbeke G., Molenberghs G. — Linear Mixed Models for Longitudinal Data
Verbeke G., Molenberghs G. — Linear Mixed Models for Longitudinal Data



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Linear Mixed Models for Longitudinal Data

Àâòîðû: Verbeke G., Molenberghs G.

Àííîòàöèÿ:

This book provides a comprehensive treatment of linear mixed models for continuous longitudinal data. Next to model formulation, this book puts major emphasis on exploratory data analysis for all aspects of the model. Several variations to the conventional linear mixed model are discussed. Most analyses were done with the Mixed procedure of the SAS software package, however, other commercially available packages are discussed as well. Great care has been taken in presenting the data analyses in a software-independent fashion.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/Âåðîÿòíîñòü/Ñòàòèñòèêà è ïðèëîæåíèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2000

Êîëè÷åñòâî ñòðàíèö: 579

Äîáàâëåíà â êàòàëîã: 15.06.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Local influence, influence graph      154 299 308
Local influence, interpretable components      160 161 163 304
Local influence, lifted line      155
Local influence, likelihood displacement      154 165 299
Local influence, linear mixed model      158—167
Local influence, maximal normal curvature      156 165 300
Local influence, normal curvature      155 156 300
Local influence, normal section      155
Local influence, perturbation scheme      153 154 299 305 326—327
Local influence, perturbed log-likelihood      153 159 298
Local influence, scatter plot      162
Local influence, selection model      298—327 462—466
Local influence, selection model, compound symmetry      302—306
Local influence, selection model, direct variables model      321—325
Local influence, selection model, dropout model      305 326
Local influence, selection model, fixed effects      303
Local influence, selection model, history      301
Local influence, selection model, incremental variables model      322—325
Local influence, selection model, interpretable components      304
Local influence, selection model, mastitis in dairy cattle      319—325
Local influence, selection model, measurement model      326
Local influence, selection model, perturbation scheme      326—327
Local influence, selection model, rat data      307—312
Local influence, selection model, serial correlation      306
Local influence, selection model, variance components      304
Local influence, specific parameters      157
Local influence, under REML      167
Local influence, variance components      161 162 304
Local influence, versus global influence      153 466—470
Local influence, weights      299
Logistic regression      234 240 267 269 272 297 314 329 403 452 506
Longitudinal component      189 195
Macro      see “SAS macro”
MAKE statement      102 361 486
MAKE statement, “noprint” option      102
MAKE statement, “out=” option      102
Marginal model      24 31—34 41 52 67 69 77 117 123
Marginal model, versus hierarchical model      52 65 117
Marginal sufficiency      46
Mastitis in dairy cattle      18
Mastitis in dairy cattle, local influence      319—325
Mastitis in dairy cattle, sensitivity analysis      312—325
Maximum likelihood estimation (ML)      42
Maximum likelihood estimation (ML), comparison with REML      46—48 139 199
Maximum likelihood estimation (ML), fixed effects      12
Maximum likelihood estimation (ML), likelihood function      42
Maximum likelihood estimation (ML), variance components      42
Mean structure      64 121 201 240 277 419 471
Mean structure, exploration      31 124 204
Mean structure, likelihood ratio test      247
Mean structure, model building      123 125 133
Mean structure, parameterization in SAS      114—117
Mean structure, preliminary      123 125 133 136 139 452 474
Mean structure, residuals      160
Mean structure, saturated model      123 406
Measurement error      241 (see “Covariance structure”)
Measurement model      269 297 302 314 328
Measurement process      see “Missing data”
Meta-analysis      420 429—442
Milk protein content trial      446—470
Milk protein content trial, global influence      460—462
Milk protein content trial, influence analysis      457—470
Milk protein content trial, informal sensitivity analysis      448—456
Milk protein content trial, local influence      462 466
Milk protein content trial, pattern-mixture model      451—456
Milk protein content trial, semi-variogram      449
Missing at random      see “Missing data”
Missing completely at random      see “Missing data”
Missing data      201—390
Missing data indicators      see “Missing data”
Missing data mechanism      see “Missing data”
Missing data patterns      see “Missing data”
Missing data process      see “Missing data”
Missing data, complete data      214
Missing data, dropout      218 276 446—470
Missing data, exploration      201—207
Missing data, exploration, dropout pattern specific plot      204 287
Missing data, exploration, dropout plot      202
Missing data, exploration, individual profiles plot      205 288 307
Missing data, exploration, mean profiles plot      204
Missing data, exploration, scatter plot      311
Missing data, exploration, scatter plot matrix      203
Missing data, full data      215 240
Missing data, identifiable parameter      216
Missing data, ignorability      213 217 239 302 382 506
Missing data, ignorability, Bayesian inference      218 376
Missing data, ignorability, frequentist inference      218 263 375 379 385
Missing data, ignorability, likelihood inference      264 375 376 385
Missing data, likelihood analysis      239
Missing data, measurement process      214 239 336
Missing data, mechanism      215 239 267 376 379
Missing data, mechanism, ignorability      217—218 375—386
Missing data, mechanism, missing at random (MAR)      212 217 222 225 233—234 239 262 269 277 281 295 298 301 307 314 320 332—336 340 345 373 376 397 458 494 498 506
Missing data, mechanism, missing completely at random (MCAR)      212 217 222 225—229 240 295 307 332 336 397 494 506
Missing data, mechanism, missing not at random (MNAR)      213 217 234—238 240 270 295 298 307 320 332 397 448 458 494 497—513
Missing data, missing data indicators      214
Missing data, missing data process      214 336 497—513
Missing data, nonignorability      217
Missing data, observed data      214
Missing data, outcome-based model      277 317 328
Missing data, pattern      210 215 377
Missing data, pattern, attrition      215
Missing data, pattern, dropout      210 218—219 224 380
Missing data, pattern, intermittent      225
Missing data, pattern, monotone      215 224
Missing data, pattern, nonmonotone      215 224
Missing data, random-coefficient-based model      277 328—329
Missing data, separability condition      218 280 282 377
Missing data, shared parameter model      329
Missing not at random      see “Missing data”
MIVQUE0      96
Mixture distribution, LR test      69—72 408 474
Mixture distribution, number of components      91 178—179 181 185
Mixture distribution, pattern-mixture model      276 292 343 347 349
Mixture distribution, random effects      85 90 170—172
MLwiN      445 489—493
MLwiN, comparison with SPlus      497
MLwiN, covariance structure      489 493
MLwiN, empirical Bayes estimation (EB)      492
MLwiN, fixed effects      490
MLwiN, Gibbs sampling      491
MLwiN, graphs      492
MLwiN, iterative generalized least squares      491
MLwiN, maximum likelihood      491
MLwiN, Metropolis — Hastings      491
MLwiN, multilevel model      489—493
MLwiN, parametric bootstrap      491
MLwiN, random effects      490
MLwiN, restricted iterative generalized least squares      491
MLwiN, serial correlation      493
Model building      121—133
Model building, covariance structure      125—132
Model building, mean structure      123—125 133
Model building, model reduction      132 133
Model building, random effects      125 128 133
Model building, serial correlation      128—132
Model building, two-stage analysis      see “Two-stage analysis”
Model misspecification covariance structure      61
Model misspecification covariance structure, cross-sectional component      190 191 194
Model misspecification covariance structure, estimation problems      52—54
Model misspecification covariance structure, random effects distribution      85—89 187
Model reduction      132—133 287
Model reduction, pattern-mixture model      371—373
MODEL statement      96 487
MODEL statement, parameterization of mean      114—117
MODEL statement, “alpha=” option      103
MODEL statement, “chisq” option      97
MODEL statement, “cl” option      103
MODEL statement, “corrb” option      487
MODEL statement, “covbi” option      487
MODEL statement, “covb” option      96 357 367 368
MODEL statement, “ddfm=” option      97 487
MODEL statement, “noint” option      96
MODEL statement, “predicted” option      97 103
MODEL statement, “predmeans” option      97 103 487
MODEL statement, “pred” option      487
MODEL statement, “solution” option      96
MODEL statement, “xpvix” option      487
Multilevel model      see “MLwiN”
Multinomial distribution      281 396
Multiple imputation      see “Imputation”
Multivariate regression      119
Multivariate tests      119
Newton — Raphson      47 50 103 132 173 379 439 441
Newton — Raphson, versus EM algorithm      173
Nonignorable missing data      see “Missing data”
Normal curvature      see “Local influence”
Objective function      see “Likelihood function”
Observed data      see “Missing data”
Ordinary least squares      125 218 221 229
Ordinary least squares, residual profiles      32 34 125
Ordinary least squares, residuals      53 125 136 139 240
Oswald      235 240 272 297 307 497—513
OSWALD, BALANCED object      506
OSWALD, PCMID function      493 503
OSWALD, PCMID function, “correxp” argument      506
OSWALD, PCMID function, “drop.cov.parms” argument      507
OSWALD, PCMID function, “drop.parms” argument      506
OSWALD, PCMID function, “dropmodel” argument      507
OSWALD, PCMID function, “maxfh” argument      508
OSWALD, PCMID function, “reqmin” argument      508
OSWALD, PCMID function, “vparms” argument      504
Outcome-based model      see “Missing data”
Outliers      77 79 316
Output delivery system (ODS)      102 486
Ovarian cancer      425—427
Ovarian cancer, coefficient of multiple determination      434—435
Ovarian cancer, prediction      434
Ovarian cancer, two-stage analysis      434
Paired t-test      see “Conditional linear mixed model”
Paradox      278—279 331
Parameter space      41 47 52
Parameter space, boundary      47 51 52 64 66 69 91 106 133 178 254
Parameter space, restricted      52
Parameter space, unrestricted      52 66
Parameterization in SAS      114—117
PARMS statement      103 131 200
PARMS statement, “eqcons” option      103
PARMS statement, “nobound” option      104 417
Pattern-mixture model      216 275—293 331—374 451—456
Pattern-mixture model, extrapolation      281 283—285 331 341 342 353 358 360 362 371
Pattern-mixture model, global hypothesis      289 455
Pattern-mixture model, hypothesis testing      366—371
Pattern-mixture model, identifying restrictions      281—282 331 340—341 343—361 373
Pattern-mixture model, identifying restrictions, ACMV      277 332—336 340 346—350 353 373
Pattern-mixture model, identifying restrictions, CCMV      277 334 340 344 348—353 369 373
Pattern-mixture model, identifying restrictions, NCMV      341 345—346 348—353 373
Pattern-mixture model, marginal effect      367—369 451
Pattern-mixture model, marginal expectation      284
Pattern-mixture model, marginal hypothesis      285—287 289
Pattern-mixture model, strategy 1      340 352—361 369
Pattern-mixture model, strategy 2      341 352—361 368
Pattern-mixture model, strategy 3      342 361—366 368—369 452
Perturbed log-likelihood      see “Local influence”
Posterior distribution      see “Bayesian methods”
Posterior mean      see “Bayesian methods”
Posterior probability      see “Bayesian methods”
Power calculations      see “Design considerations”
Prediction, best linear unbiased      80
Prediction, future observation      122
Prediction, intervals      444—445
Prediction, population-averaged      471 481—482
Prediction, subject-specific      432 433 471
Prediction, subject-specific profiles      77 80
Prediction, trial-specific      431 432
Preliminary mean structure      see “Mean structure”
Preliminary random-effects structure      see “Random effects”
Principal components      462
Prior distribution      see “Bayesian methods”
PRIOR statement      487
PRIOR statement, "data=“ option      487
PRIOR statement, “alg=” option      487
PRIOR statement, “bdata” option      487
PRIOR statement, “grid=” option      487
PRIOR statement, “gridt=” option      487
PRIOR statement, “lognote=” option      487
PRIOR statement, “logrbound=” option      487
PRIOR statement, “out=” option      488
PRIOR statement, “outg=” option      488
PRIOR statement, “outgt=” option      488
PRIOR statement, “psearch=” option      488
PRIOR statement, “ptrans” option      488
PRIOR statement, “seed=” option      488
PRIOR statement, “tdata option      488
PRIOR statement, “trans=” option      488
Probit regression      329
PROC GLM versus PROC MIXED      119
PROC MIXED statement      95 486
PROC MIXED statement, “asycorr” option      96
PROC MIXED statement, “asycov” option      96 357
PROC MIXED statement, “CL=” option      486
PROC MIXED statement, “CL” option      486
PROC MIXED statement, “covtest” option      96
PROC MIXED statement, “empirical” option      103 246
PROC MIXED statement, “ic” option      96
PROC MIXED statement, “info” option      183
PROC MIXED statement, “method=” option      96
PROC MIXED statement, “method” option      486
PROC MIXED statement, “nobound” option      104 417
PROC MIXED statement, “scoring=” option      103
PROC MIXED statement, “scoring” option      103 131 385
PROC MIXED versus PROC GLM      119
PROC MIXED, output      104—114
PROC MIXED, output, fixed effects      111
PROC MIXED, output, information criteria      106 107
PROC MIXED, output, iteration history      104
PROC MIXED, output, model fit      105
PROC MIXED, output, random effects      113
PROC MIXED, output, variance components      107
PROC MIXED, program      94—104
Profile      246 249 262 264 270
Profile likelihood      157 300
Prostate data      11 13
Prostate data, classification of subjects      180—183
Prostate data, cluster analysis      180—183
Prostate data, discriminant analysis      180—183
Prostate data, estimation problems      50 131
Prostate data, heterogeneity model      180—183
Prostate data, in SAS      94—117
Prostate data, inference fixed effects      57—61 63 133
Prostate data, inference random effects      82
Prostate data, linear mixed model      26 48 58 129
Prostate data, local influence analysis      162—167
Prostate data, marginal testing random effects      72—73 133
Prostate data, mean exploration      124
Prostate data, model reduction      133
Prostate data, OLS residual profiles      126
Prostate data, preliminary mean structure      124
Prostate data, preliminary random—effects structure      127
Prostate data, robust inference      62
Prostate data, semi-variogram      147 148
Prostate data, serial correlation      129 136 138—140 147—148
Prostate data, two-stage analysis      21 39
Prostate data, variance function      127 131
Random effects      24 28 241 252 270 388
Random effects, classification      see “Heterogeneity model”
Random effects, empirical Bayes estimation (EB)      78—79 113 170 176 195
Random effects, F-test      79
Random effects, Henderson“s mixed model equations      79
Random effects, heterogeneity model      see “Heterogeneity model”
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå