Авторизация
Поиск по указателям
Reise S.P., Duan N. — Multilevel modeling: methodological advances, issues, and applications
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Multilevel modeling: methodological advances, issues, and applications
Авторы: Reise S.P., Duan N.
Аннотация: Researchers in multilevel modeling (MLM) report on new statistical advances, methodological issues, and applications in MLM, and examine problems that occur when trying to use MLM in applied research in areas such as power, experimental design, and model violations. The book will be of interest to researchers in advanced statistical training and experience in applying MLMs, especially in the areas of education, clinical intervention, psychology, and other behavioral sciences. The book can also be used as a supplement for an introductory graduate course. Reise teaches measurement at the University of California-Los Angeles. Duan teaches psychiatry and biostatistics at the University of California-Los Angeles.
Язык:
Рубрика: Математика /Вероятность /Статистика и приложения /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 2002
Количество страниц: 314
Добавлена в каталог: 12.06.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Adams, D. C. 109 111
Adaptive robust estimates 43
Additive linearly constant effects (ALICE) 128
Aggregated group-level effects (AGLEs) 219—223
Aitkin, M. 188 206 268 279 294 296
Alpert, A. 64 68
Altman, D. G. 253
Alwavs-taker 114
Alwin, D. F. 258 279
Analysis of verbal learning experiment 15—18
Anderson, D. A 188 206 268 279 294 296
Angrist, J. D. 113—115 136 137
Annandale, E. 233 236 253
Arbuckle, J. L. 257 279
Arminger, G. 75 88
Assumption of independence 262
Asymptotic normality 60
Average causal effect (ACE) 116
Baca, L. M. 159 178
Bachmann, N. 157 160 161 163 174 178
Bandura, A. 144 154
Banspach, S. 144 145 147 154
Barcikowski, R. S. 294—296
Barnett, V. 229 230 252
Barrera, M. 159 178
Bartholomew, L. K. 144 154
Basen — Engquist, K. 144 145 147 154
Basford, K. E. 80 88
Bates, D. M. 2 3 20 22 73 88
Baum, A. 159 179
Baumert, J. 285 297
Baumler, E. 140 147 154
Becker, P. 162 178
Belfield, C. 198 206
Belin, T. 47 49
Bell, R. A. 171 178
Benson, J. 258 279
Bentler, P. M. 53 55 64 67 68 70
Bernstein, I. H. 101 111
Berry, S. H. 286 297
Berta, D. 157 161 174 178
Best, N. G. 27 34 43 49 51 144 156
Bias correction 216 218—219 223 226—227
Bibby, J. M. 266 281
Biggerstaff, B. J. 108 111
Blair, R. C. 294 296
Bli 220
Bloom, H. S. 113 136
Bock, R. D. 2 21
Bois, F. 48 50
Bootstrap and errors in variables 211
Bootstrap and multilevel modeling 211 213
Bootstrap and random variables 211—212
Bootstrap, bias correction 218—219 223 226—227
Bootstrap, comparison of methods 225—227
Bootstrap, conditional semiparametric (CSP) 213 214 218 221 226—227
Bootstrap, convergence 218 221—223
Bootstrap, estimated standard error 219
Bootstrap, level 2
Bootstrap, nonparametric 212 215 217—218
Bootstrap, nonparametric maximum likelihood estimate 217—218
Bootstrap, only 218 223—227
Bootstrap, paradigms 212
Bootstrap, parametric 213 223—227
Bootstrap, residuals 213 227
Bootstrap, simple random resampling (SRR) 215—216 219—220
Bootstrap, two stage (TSRR) 217—218 220 222 225—226
Bootstrap, units 215 226—227
Boscardin, C. K. 71 81 89
Bosker, R. J. 91 111 287 288
Box, G. E. P. 31 32 49
Boyles, R. A. 68
Bozzette, S. A. 286 297
Bradbury, T. N. 160 178
Bradway, K. 12 13 15 16 21
Brant, L. J. 13 22
Brenner, S. 0 273 279
Brown, C. H. 114 118 123 129 137 138 295 296
Brown, J. A. 286 297
Browne, W. 188 197 199 207 235 253 255 259 263 271 280 282
Bryk, A. S. 1 21 26 27 30 31 34 46 49 51 74 88 91—94 100 106—109 111 140 141 144 154 159 178 188 206 255 257 279 285 296
Burda, P. C. 159 178
Burden, R. L. 3 21
Burnam, M. A. 286 297
Busing, F. M. T. A. 144 154 211 228
Cameron, B. 259 263 282
Carlin, B. 26 31 38 49 50
Carlin, J. B. 32 50 114 118 129 138
Carpenter, B. N. 159 163 179
Carpenter, J. 211 215 227
Carter, H. B. 13 22
Carter, N. L. 256 280
Carter, R. L. 20 22
Carvajal, S. C. 140 147 154
Categorical latent variable 116
categorical variables 210
Caterpillar diagrams 196
Chambers, J. M. 3 21
Chan, W. 154
Chang, H. 47 50
Charlton, C. 259 263 282
Cheong, Y. F. 107
Chinchilli, V. M. 2 22
Choi, K. 25 27—29 51
Choice of estimand 289—290
Clayton, D. J. 204 206
Clustering 80 147—148 288 293—296
Cochran, W. G. 288 296
Cohn, S. E. 286 297
Collins, J. 147 154
Common metric completely standardized solution 276
Compiler average causal effect (CACE) 113—114
Compiler example 123—128 130—134
Compiler growth mixture CACE modeling 113 115
Compiler ML — EM algorithmll 5—118
Complementary log-log 185
Complete data 56
Complier 114
Composite construct 273
Composite variable 256 257 259 270 274 275 278
Composite variable, maximally reliable 257
Composite variable, reliability 258
Compositional effect 158 174
Computer programs, CODA. 34 48
Computer programs, EQS 64
Computer programs, GLIM 4 188
Computer programs, HLM 31 34 47 73 92 107 109 188
Computer programs, LISREL 258
Computer programs, META 96
Computer programs, MIXOR 73 144 188
Computer programs, MIXREG. 144
Computer programs, MLn 73 165 211 218 227 259
Computer programs, MLwiN 92 107—199 235 259
Computer programs, Mplus 64—66 80 117
Computer programs, PRELIS. 258
Computer programs, SAS PROC MIXED. 73 144
Computer programs, VACRL. 144
Computer programs, VkHlm 108—109
Computer programs, WinBUGS 27 34 43 46 48 108 144
Confirmatory factor analysis 257
Congdon, R. T. 107 108 110 111 144 154
Conn, M. 256 280
Contextual conditions 158
Contextual effect 158—160 174
Continuous latent variable 113 115
Convergence (see bootstrap convergence) 221—223
Cooper, C. L. 273 279
Cooper, H. 99 110
Cornell, J. 93 110
Covariance level 1
Covariance level, error 210 217
Covariance level, level 2
Covariance structure model 273
Cowles, M. 34 49
Coyle, K. 144 145 147 154
Cramer, L. A. 171 178
Cronbach, L. J. 279
Cross-classification 197
Crossed effects 202
Cudeck, R. 13 21 255 279
Curran, P. J. 74 77 89 295 297
Cut point 194
Cut point estimates 203
Cut point parameter 193
Cutoff 234 249 250
Cutoff criterion 236
Cuttance, P. 255 256 269 279
Data augmentation 204
Davidian, M. 2 4 21
Davila, J. 160 178
de Leeuw, J. 2 22 285 295 297
Defier 114
Dempster, A. P. 26 50 56 68 117 136
Dennis, J. E. 3 9 21
Dey, D. 47 50
Di, G. 235 253
Diggle, P. 230 235 252
Dingle, N. L. 256 280
Direct effect 268 275
Discordant 230
Discordant observation 232
Distributional assumptions 271
Dixon, W. 241 252
Donner, A. P. 291 297
Dose-response curve 129
Draper, D. 31 43 47 50 188 197 199 207 235 253 255 271 280 282
Draper, N. R. 212 228 266 279
Drew, J. B. 159 163 179
du Toit, M. 109 110 255 257 269 279 281
du Toit, S. 1 21 23 109 110 255 257 269 279 281
Duan, N. 286 297
Dummy variable 232 237 242
DuMouchel, W. H. 110
Duncan, C. 159 165 178
Duncan, S. C. 64 68
Duncan, T. E. 64 68
Duval, R. D. 212 214 228
Dwyer, J. 291 297
Ecob, R. 231 233 236 252 253 255 256 279
Efron, B. 129 136
Eggli, P. 157 161 174 178
Elliot, P. R. 154 155
Elliott, P. R. 281
EM gradient 56 60
Empirical Bayes estimation 30
Endogenous 275
Equal interval scales 182
Errors-in-variables model 211—213
Exclusion restriction 115 135
Exogenous 275
Experimental design in MLM 291—293
Experimental design in MLM, factorial design 292
Experimental design in MLM, split plot design 292
Extramultinomial 189
Extramultinomial variation 183 204
Ezzett, F. 188 199 206
Factor score 258
Factor score regression coefficient 258
Factor score regression coefficients proportionally weighted 259 260
Factor score regression weights 257 260
Faires, J. D. 3 21
Feldman, D. 129 136
Feldman, H. A. 291 297
Fielding, A. 181 186 187 189 190 193 194 198 204
Finite mixture modeling 116
Fishbein, M. 144 155
Fisicaro, S. A. 159 163 179
Fitz — Gibbon, C. T. 195 207
Fleishman, J. 258 279
Fleming, R. 159 179
Francis, D. 71 72 75 76 81 88 89
Frankel, M. R. 286 297
Freedy, J. R. 158 179
Fuller, W. A. 212 228
Fully Bayesian analysis 31
Functional model 212
Fydrich, T. 162 180
Gauss-hermite quadrature 6 24
Gelfand, A. E. 31 32 46 47 50 52
Gelman, A. 32 33 43 47 48 50
General latent variable model 113
Generalized linear mixed models 182 187 199 204
Gibbons, R. D. 109 110 144 154 155 188 195 207 295 297
Gibbs sampling/sampler 27 31 34 47—48
Gilks, W. 27 32 50 51 144 156
Giltinan, D. M. 2 4 21
Glaisher, J. 250 253
Glass, G. V. 90 93 97 110
Gleser, L. J. 107 110
Goldman, D. P. 286 297
Goldman, N. 155
Goldstein, H. 1 21 53 69 74 88 91 103 107 110 140—144 149 154—156 159 165 176 179 180 185 186 188 189 195 200 206—211 215 218 227—230 233 235 250 253 255—257 259 262 269 271 280 282 285 297
Grade level scores 197
Graham, J. W. 141 155
Graubard. B. 1 291 297
Greene, J. 28 29 51
Greenhouse, J. B. 103 110
Growth mixture modeling 79 113 115
Growth modeling 73—76 229
Growth modeling for the request behavior data 29—30
Growth modeling with multiple processes 76—77
Growth trajectory 73
Gurevitch, J. 109 111
Gutscher, H. 158 179
Hagley, F. 219 228
Hamagami, F. 12 14 22 256 281
Hansson, R 0 159 163 179
Harrist, R. 140 147 154
Hart, P. M. 256 273 280
Harville, D. A. 188 207
Hastie, T. J. 3 21
Haukka, J. M. 211 228
Hawkins, D. 229 230 253
Hays, R. B. 159 179
Healy, M. J. R. 188 196 197 199 207 235 253 255 257 259 263 271 280 282
Heath, A. 198 208
Heck, R, H. 55 69
Hedeker, D. 109 110 144 154 155 186 188 195 207 295 297
Hedges, L. V. 90—92 94—97 99 100 106 108 110
Heterogeneity of variance 235 251
Higgins, J. J. 294 296
Hilden — Milton, J. 229 253
Hill, P. W. 256 258 280 283
Hills, S. 31 50
Hinde, J. 268 279 294 296
Hirano, K. 115 135 136
Hitchcock, P. 144 155
Hoadley, B. 60 69
Hobfoll, S. E. 158 179
Hodges, J. 229 253
Hoeksma, J. 229 253
Hogg, R. 46 50
Holland, P. W. 114 128 137
Hollis, M. 75 89
Holmes — Smith, P. 256 258 280 283
Hops, H. 64 68
Hornung, R. 157 158 161 174 178 179
Hox, J. J. 53 66 69 91 110 255 280
Huber, L. 159 178 179
Hunt, K. 233 236 253
Реклама