Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Salvatore D., Reagle D. — Statistics and econometrics
Salvatore D., Reagle D. — Statistics and econometrics



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Statistics and econometrics

Àâòîðû: Salvatore D., Reagle D.

Àííîòàöèÿ:

Updated and expanded second edition of the internationally bestselling guide to principles and practices for undergraduate business and economics students taking mandatory economics statistics courses. Numerous examples, worked problems, and two full-length self-examinations included.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/Âåðîÿòíîñòü/Ñòàòèñòèêà è ïðèëîæåíèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: second edition

Ãîä èçäàíèÿ: 2002

Êîëè÷åñòâî ñòðàíèö: 328

Äîáàâëåíà â êàòàëîã: 10.06.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Mean-square error (MSE), in hypothesis testing      92 110—113
Mean-square error (MSE), in simple regression analysis      134 148—149
Measurement errors      221—222
Median      11 12 15 19—24
Mesokurtic curve      15 57
Microsoft Excel      267—268 272—276 292
MODE      11 12 15 19—24
Moving Average      242—244 249—251
MSE      see “Mean-square error”
Multicollinearity      206—207 210—212 222—223
Multiple events      37—39 44—50 63—64
multiple regression analysis      4 134 154—180
Multiple regression analysis, coefficient of multiple determination in      157 169—171 179
Multiple regression analysis, forecasting in      183—184
Multiple regression analysis, partial-correlation coefficient in      158—159 172—173 179
Multiple regression analysis, test of overall significance of the regression in      158 171—172 179
Multiple regression analysis, tests of significance of parameter estimates in      155 165—169 179
Multiple regression analysis, three-variable linear model as      154—155 161—165 178
Multiplication, for dependent events      38 45—50
Multiplication, for independent events      38 45 46 49
Mutually exclusive (disjoint) events      37—38 44—46 63
negative correlation      132—133 144—145
Negative linear relationship      172—173
Negatively skewed distribution      15 29—30
Nonlinear estimators      147—148
Nonlinear functions      181
Nonlinear regression analysis      134
Nonoccurrence probability      36
Nonparametric testing      94—95 115—119 122—123
Normal distribution, as continuous probability distribution      41—42 57—62 65—66
Normal distribution, in estimation      69—70 85
Normal distribution, in hypothesis testing      88 90 92 94—95 96—99 106—107
Normal distribution, in simple regression analysis      131 143
Normal distribution, or error term in simple regression analysis      128
Normal distribution, standard      41—42 307
Normal equations      128—129
Null hypothesis, in hypothesis testing      87—89 90 93—94 98 108 110 113—115
Null hypothesis, in multiple regression analysis      171—172
Null hypothesis, in simple regression analysis      143
Observed frequencies      90—92 104—109
OC (operating-characteristic) curve      89 100—101 120
Ogive (distribution curve)      9 17—19
OLS      see “Ordinary least-squares method”
One-factor (one-way) analysis of variance      93
One-tail test      88 98 102 104
One-way (one-factor) analysis of variance      93
One-way ANOVA table      109—115
Operating-characteristic (OC) curve      89 100—101 120
Order condition      233
Ordinary least-squares estimators      133—134 147—149 153
Ordinary least-squares method (OLS)      128—130 136—141 148 152 183
Ordinary least-squares method (OLS), Almon lag model and      196
Ordinary least-squares method (OLS), autocorrelation and      215—216
Ordinary least-squares method (OLS), distributed lag model and      193—195
Ordinary least-squares method (OLS), errors in variables and      209—210 221—222
Ordinary least-squares method (OLS), forecast and      198
Ordinary least-squares method (OLS), functional form and      186—189
Ordinary least-squares method (OLS), heteroscedasticity and      207—209 212—215
Ordinary least-squares method (OLS), in multiple regression analysis      161—171
Ordinary least-squares method (OLS), indirect least squares and      229—230
Ordinary least-squares method (OLS), multicollinearity and      206 210
Ordinary least-squares method (OLS), nonlinear functions and      181
Ordinary least-squares method (OLS), qualitative dependent variable and      184
Ordinary least-squares method (OLS), simultaneous equations methods and      228 232—233 237—238 239
Overidentified equations      229—230 233—235
Parameter estimations, in multiple regression analysis      154—155 161—165 178
Parameter estimations, test of, in simple regression analysis      130—132 141—144 152—153
Parameter(s)      1 5—8 67
Parameter(s), estimation of      67—69
Parameter(s), in simple regression analysis      135
Parameter(s), statistic and      71—72 (see also “Specific parameters”)
Partial autocorrelation function (PACF)      244—245 251—253
Partial-correlation coefficients      158—159 172—173 179
Pearson’s coefficient of skewness      see “Skewness coefficient
Percentiles      23—24
Perfect linear relationship      172—173
Perfect multicollinearity      210
permutations      50
Personalistic (subjective) probability      42—43
Platykurtic curve      15
Point estimates      69 76
Poisson distribution      40 55—57 61 65
Polynomial function      181 186—187
Population      1—3
Population mean      19
Population mean, hypothesis testing      87—89 96—101 119—120
Population mean, in estimation      67—69 72—84
Population parameters, functional form and      186—187
Population parameters, in simple regression analysis      148
Population, defined      71
Population, grouped      11—14 19—29 51—52
Population, ungrouped      11—14 20—28
Positive linear correlation      132—133 144—145
Positive linear net relationship      172—173
Positively skewed distribution      15
Power curve      89 100—101 120
Predetermined variables      231—232
Prediction, and forecasting      197—198 (see also “Forecasting”)
Prediction, and forecasting, in multiple regression analysis      154 (see also “Multiple regression analysis”)
Prediction, and forecasting, simple regression analysis for      128 (see also “Simple regression analysis”)
Price elasticity      175—178 181—182 187
probability      1 36—66
Probability distribution (density function, continuous random variable)      41—42 57—58
Probability distribution (density function, continuous random variable), binomial distribution as discrete      39—40 54 64
Probability distribution (density function, continuous random variable), normal distribution as continuous      41—42 57—58 65
Probability distribution (density function, continuous random variable), Poisson distribution as      40 55—57 65
Probability theory      3
Probability, of multiple events      37—39 44—50 63—64
Probability, of single events      36—37 42—44 62—63
Probit model (cumulative normal function)      184 199
Qualitative dependent variable      184—185
Qualitative explanatory variable      182 189—193 203—204
Quartile deviation      13 24
Quartiles      23—24
Random disturbance      see “Error term”
Random samplings      3
Random samplings, and sampling distribution of the mean      67—68
Random samplings, in estimation      67—39 72—81 84
Random samplings, in hypothesis testing      67 87—89 95—96
Random samplings, in simple regression analysis      147—148
Random samplings, simple, defined      72
Random variables, continuous      41—42 57—58
Random variables, discrete      39—40 54
Random variables, in binomial distribution      39 51
Random walk      246
Random walk, with drift      246
Random-number table      309
Randomized design, completely      111
RANGE      13 24
Range, coefficients in multiple regression analysis      172
Range, in simple regression analysis      144
Rank (Spearman’s) correlation coefficient      132—133 146
Rank condition      233
Reciprocal function      181 186—187
recursive models      232—233
Reduced-form coefficients      232—237
Reduced-form equations      228—230 231—237
Reduced-form parameters      233
Regression analysis      1 3—4 128—227
Regression analysis, autocorrelation as problem in      208—209 215—220 242
Regression analysis, distributed lag models in      182—183 193—196 204—205
Regression analysis, dummy variables in      182 189—193 203—204
Regression analysis, errors in variables as problems in      209—210 221—222 226—227
Regression analysis, forecasting      183—184 197—198 205
Regression analysis, functional form in      181—182 186—189 202
Regression analysis, heteroscedasticity as problem in      207—208 212—215 223—225
Regression analysis, multicollinearity as problem in      206—207 210—212 222—223
Regression analysis, multiple regression analysis in      see “Multiple regression analysis”
Regression analysis, simple regression analysis in      see “Simple regression analysis”
Regression sum of squares (RSS)      110—115 132 144 157
Rejection region, in autocorrelation      208 217
Rejection region, in hypothesis testing      87—89 95—104
Rejection region, in multiple regression analysis      171—172
Rejection region, in simple regression analysis      143
Rejection region, type I and type II errors and      87 95—96 100 119
Relative dispersion      29
Relative frequency (empirical probability) distribution      9 42—44
Relative frequency (empirical probability) distribution, probability distribution distinguished from      51
Relative frequency (empirical probability) distribution, probability or theoretical      97
Representative sample      1—3 67 72
Residual variance      111—113 130
Residual variance, in multiple regression analysis      126 165 171
Residual variance, in simple regression analysis      130
Right-tail test      88—90 97—98 104 110—111
Row mean      111—115
RSS (regression sum of squares)      110—115 132 144 157
Sample (column) mean      92 109—114
Sample in estimation      67 72—76 84
Sample size, in estimation      78—81 85
Sample size, in hypothesis testing      87—88
Sample space      47
Sample variance      109—110
Sample(s)      1 3 72 92
Sample, representative      1—3 67 72
Sampling distribution of biased estimator      147
Sampling distribution of consistent estimator      149
Sampling distribution of the mean      67
Sampling distribution of the mean, empirical      74
Sampling distribution of the mean, in estimation      67—69 72—76 84
Sampling distribution of the mean, in hypothesis testing      87 96—97
Sampling distribution of the mean, theoretical      72—74 78 81 83
Sampling distribution of unbiased estimator      147
SAS      269—271 282—292 293
Scatter diagram      128 134
Semilog function      181—182 186—189
Sequential (tree) diagram      47—48
Serial correlation      see “Autocorrelation”
Set theory      38 47
Significance level, heteroscedasticity and      214—215
Significance level, in autocorrelation      208—209 215—220
Significance level, in hypothesis testing      87 95
Significance level, in multiple regresssion analysis      158 171—172 179
Significance level, in simple regression analysis      130—132 143—144
Simple regression analysis      4 128—153
Simple regression analysis, ordinary least-squares method in      see “Ordinary least-squares method”
Simple regression analysis, properties of ordinary least-squares estimators in      133—134 147—149 153
Simple regression analysis, test of goodness of fit and correlation in      132—133 144—147 153
Simple regression analysis, tests of significance of parameter estimates in      130—132 141—144 152—153
Simple regression analysis, two-variable linear model of      128 134—136 151
Simultaneous-equations bias      228 231—232
Simultaneous-equations methods (models, system)      1 3—4 228—241
Simultaneous-equations methods (models, system), identification and      229 233—235 239—240
Simultaneous-equations methods (models, system), indirect least squares and      229—230 235—237 240—241
Single events      36—37 42—44 62—63
Skewness, coefficient of (Pearson’s coefficient of skewness)      15—16 29—30
Skewness, coefficient of (Pearson’s coefficient of skewness), binomial distribution and      39 54 64
Skewness, coefficient of (Pearson’s coefficient of skewness), in shape of distribution      14—15
Spearman’s (rank) correlation coefficient      132—133 144—145
Specification of model      2
SSA (sum of suqares)      92—93 110—115
Standard deviation (error)      13—15 26—29
Standard deviation (error), autocorrelation and      208
Standard deviation (error), in binomial distribution      39 54—55
Standard deviation (error), in estimation      67—71 72—76 77—84
Standard deviation (error), in hypothesis testing      88—90 97—99 101—104
Standard deviation (error), in multipe regression analysis      165
Standard deviation (error), in Poisson distribution      56
Standard deviation (error), in simple regression analysis      141
Standard deviation (error), indirect least squares      229 236
Standard deviation (error), of continuous probability distribution      57—58
Standard deviation (error), of lagged values      197
Standard deviation (error), of the estimates      79 130—131 155
Standard deviation (error), probability      62
Standard deviation (error), sampling distribution of the mean      67—71
Statistic      67—69 71—72
Statistical criteria      6
Statistical inference      1 3 67 70—71 84 hypothesis
Statistics      1 2 84
Statistics examination      124—127
Statistics, and econometrics      1 3—5 7—8
Statistics, nature of      1—3 7
Stepwise multiple regression analysis      172—173
Stochastic disturbance      see “Error term”
Stochastic equation      1 5 7—8
Stochastic explanatory variables      see “Independent variables”
Stochastic term      see “Error term”
Stratified sampling      72
Structural (behavioral) equations      228—233
Structural coefficients      223—235
Structural parameters      228—231 233—237
Student’s t distribution      see “t distribution”
Subjective (personalistic) probability      42—43
sum of absolute deviations      136—137
Sum of deviations      136—137
Sum of squared deviations      136—137
Sum of squares (SSA)      92—93 110—115
Symmetry, of binomial distribution      39 54 64
Symmetry, of continuous probability distribution      57—58
Symmetry, of distribution      15
Symmetry, of normal distribution      41 57—58
Symmetry, of t distribution      70
systematic sampling      72
t (Student’s t) distribution, confidence intervals for the mean using      70—71 81—84 86
t (Student’s t) distribution, in estimation      81—82
t (Student’s t) distribution, in forecast      184 197—198
t (Student’s t) distribution, in hypothesis testing      88 98
t (Student’s t) distribution, in simple regression analysis      131 143—144
t (Student’s t) distribution, proportions of area for      310
Text formats      266
Theorem 1 (sampling distribution of the mean)      67
Theorem 2 (sampling distribution of the mean)      68 75
Theoretical sampling distribution of the mean      72—74 78 81 83
Third movement      15 30
Three-variable linear model      154—155 161—165 178
Time-series analysis      136 208 215 242—265
Time-series data      6
Total sum of squares (TSS) in hypothesis testing      92 110—114
Total sum of squares (TSS) in multiple regression analysis      157
Total sum of squares (TSS) in simple regression analysis      132 144
Tree (sequential) diagram      47—48
Trend stationary      246
TSS      see “Total sum of squares”
Two-factor ANOVA table      113—115
Two-stage least squares (2SLS)      230 237—238 241
Two-tail test      87—8 96—97 101 103 143 167
Two-variable linear model      128 134—136 151
Two-way (two-factor) analysis      113
Two-way (two-factor) analysis, ANOVA table      113—115
Type I error      87 95—96 100 119
Type II error      87 95—96 100 119
Unbiased estimate(s), in forecast      184 197
Unbiased estimate(s), in functional form      181
Unbiased estimate(s), in hypothesis testing      103
Unbiased estimate(s), in multiple regression analysis      155 163
Unbiased estimate(s), in simple regression analysis      141 147
Unbiased estimate(s), of forecast-error variance      197
Unbiased estimators      147—148
Unbiased estimators, in estimation      76—77
Unbiased estimators, qualitative dependent variable and      184
Unbiased point estimate      69 85
Underidentified equation      229—230 233—235
Unexplained residual      111—115
Ungrouped data      118
Uniform distribution      245
Unit root      11—14 20—28
Variables      see “Specific variables”
Variance      26—29
Variance, analysis of      92—93 109—115
Variance, ANOVA tables      109—115
Variance, as equal mean-square error plus, square of bias of estimator      148
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå