Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Salvatore D., Reagle D. — Statistics and econometrics
Salvatore D., Reagle D. — Statistics and econometrics



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Statistics and econometrics

Àâòîðû: Salvatore D., Reagle D.

Àííîòàöèÿ:

Updated and expanded second edition of the internationally bestselling guide to principles and practices for undergraduate business and economics students taking mandatory economics statistics courses. Numerous examples, worked problems, and two full-length self-examinations included.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/Âåðîÿòíîñòü/Ñòàòèñòèêà è ïðèëîæåíèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: second edition

Ãîä èçäàíèÿ: 2002

Êîëè÷åñòâî ñòðàíèö: 328

Äîáàâëåíà â êàòàëîã: 10.06.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
$r^2$      see “Determination coefficient
2SLS (two-stage least squares)      230 237—238 241
A priori (classical) probability      37 42—44 51
A priori theoretical criteria      6
Absolute dispersion      29
Acceptance region in hypothesis testing      87—89 95—104
Acceptance region in multiple regression analysis      171—172
Adjusted $R^2$ (R, adjusted coefficient of multiple determination)      157 170—171
Aikake’s information criteria (AIC)      244 248 253—254 261—262 265
Almon lag model      183 194—196 205
Alternative hypothesis, in hypothesis testing      87—89 95—96 99—101
Alternative hypothesis, in multiple regression analysis      171
Alternative hypothesis, in simple regression analysis      143
Analysis of variance      see “ANOVA”
ANOVA (analysis of variance) tables      92—93 109—115
Arithmetic mean (average)      11
ARMA      242—245 249—254
Asymptotic unbiasedness      148—149
Augmeted Dickey — Fuller (ADF)      246—247 257
Autocorrelation (serial correlation), and errors in variables      217
Autocorrelation (serial correlation), as problem in regression analysis      208—209 215—220 242
Autoregression      242 249—251
Autoregression function (ACF)      244—245 251—253
Average (arithmetic mean)      11
Average deviation      13 24—25
Bayes’ Theorem      39 49—50
Behavioral (structural) equations      228 231—233
Best linear unbiased estimators      see “BLUE”
Best unbiased (efficient) estimators      133—134 147—149
Bias      133—134 147—149 228 231
Biased estimates      147—149 183
Biased estimates, and errors in variables      221
Biased estimates, heteroscedasticity and      207
Biased estimates, Koyck lag model and      194
Bimodal distribution      20
Binary choice models      184—185 198—200
Binomial distribution, as discrete probability distribution      39—40 51—55 64—65
Binomial distribution, in estimation      70 79—81
Binomial distribution, in hypothesis testing      88—89 90—92 98—99 105—106
Binomial distribution, normal distribution and      60
Binomial distribution, Poisson distribution distinguished from      55—56
Binomial probabilities      300—305
BLUE (best linear unbiased estimators), in multiple regression analysis      162
BLUE (best linear unbiased estimators), in simple regression analysis      133—134 147—149
Box — Pierce statistic      244 253
Causality      248—249 260—262 264—265
Central tendency      19—24 34
Central-limit theorem      68 75 84
Chebyshev’s theorem (inequality)      42 62 66 71 83—84 86
Chi-square test, of goodness of fit and independence      90—92 104—109 120—122
Chi-square test, proportions of area of      311—312
Class boundaries (exact limits)      18
Class intervals, in descriptive statistics      9 11 16—18
Class intervals, in hypothesis testing      106—107
Classical (a priori) probability      37 42—44 51
cluster sampling      72
Co variance      16 129 145
Cobb — Douglas production function      187 210—211
Coding      22 27
Coefficients      5—7 (see also “Specific coefficients”)
Cointegration      247—248 258—260 264
Collection of data      2
Collinear independent variable      210
Column (sample) mean      92 109—114
Combinations      50
Conditional forecast      197
Conditional probability      38 47—48
Confidence intervals, and efficient estimator      147—148
Confidence intervals, autocorrelation and      208 216
Confidence intervals, for the mean using t distribution      70—71 81—84 86
Confidence intervals, in estimation      69—70 76—81 83—85
Confidence intervals, in forecast      183—184 197—198
Confidence intervals, in multiple regression analysis      165—169
Confidence intervals, in simple regression analysis      144
Confidence level, in estimation      69 76—80 83—85
Confidence level, in forecast      197—198
Confidence level, in hypothesis testing      87—88 95—99
Confidence limits      77
Consistency      148—149
Consistent estimators      134 148—149 186—187
Contingency-table tests      90—92
Continuity, correction for      92
Continuous distribution      41 57—62 105
Continuous probability distribution      41—42 57—62 65—66
Continuous random variables      see “Probability distribution”
Continuous variables      41 51 57 61
Correlation, coefficient of, in simple regression analysis      132—133 132 144—147
Correlation, coefficient of, multicollinearity and      210—211
Correlation, coefficient of, partial, in multiple regression analysis      158—159 172—173 179
Correlation, coefficient of, rank      132—133 146—147
Correlation, coefficient of, simple, in multiple regression analysis      158—159
Correlogram      244
Counting techniques      39 50 64
Critical region      see “Rejection region”
Cross-sectional analysis      135
Cross-sectional data      6 213
Cumulative frequency distribution      9 19
Cumulative normal function (probit model)      184 199
Data formats      266 271 292
Deciles      23—24
Degrees of freedom heteroscedasticity and      207 213
Degrees of freedom in distributed lag model      193
Degrees of freedom in dummy variable      189—190
Degrees of freedom in estimation      70—71 81—84
Degrees of freedom in forecast      183—184 197
Degrees of freedom in hypothesis testing      88 92—93 102—103 109—115
Degrees of freedom in multiple regression analysis      158 171—172
Degrees of freedom in simple regression analysis      131 143
delimiters      266 271
Demand function      5—7
Density function      see “Probability distribution”
Dependent variable      see also “Simultaneous-equations methods”
dependent variables      1 3—6 44 49
Dependent variables, and errors in variables      221—222
Dependent variables, autocorrelation and      216—217
Dependent variables, endogenous variable as      228—229
Dependent variables, in distribution lag model      193
Dependent variables, in forecasting      197 (see also “Forecasting”)
Dependent variables, in multiple regression analysis      154 (see also “Multiple regression analysis”)
Dependent variables, in simple regression analysis      128 134—136
Dependent variables, multiplication for      38 44—49
Dependent variables, qualitative      184 198—199
Descriptive statistics      1—3 9—35
Descriptive statistics, frequency distributions in      9—10 16—19 33
Descriptive statistics, in multiple regression analysis      157 169—171 179
Descriptive statistics, in simple regression analysis      132—133 144—145
Descriptive statistics, measures of central tendency in      11—12 19—24 34
Descriptive statistics, measures of dispersion in      13—15 24—29 35
Descriptive statistics, multicollinearity and      206 210
Determination, coefficient of ($R^2$), and autocorrelation      218
Discrete distribution      17 39—40 51—57 64—65
Discrete random variables      39 51
Disjoint (mutually exclusive) events      37—38 44—46 63
dispersion      13—15 24—29 35
Distributed lag models      182—183 193—196 204—205
Distribution curve (ogive)      9 17 19
Distribution, central tendency of      11
Distribution, central tendency of, in simple regression analysis      143 (see also “Specific distributions”)
Disturbance      see “Error term”
Double-lag form (model)      181—182 186—187 202
Double-lag linear model (form)      181—182 186—189
Dummy variables      182 189—193 203—204
Durbin two-stage method      217
Durbin-Watson statistic      208 216—217 318
Econometric criteria      6—7
Econometrics examination      294—299
Econometrics, methodology of      1 2 5—8
Econometrics, statistics and      1—5 7—8
Economic theory      1 4
Efficient (best unbiased) estimators      147—149 183
Empirical probability      see “Relative frequency distribution”
Empirical sampling distribution of the mean      74
Endogenous variables      228—229
Error correction      247—248 258—260 264
Error sum of squares (ESS)      110—115
Error sum of squares (ESS), heteroscedasticity and      207—208 213—214
Error sum of squares (ESS), in simple regression analysis      132 144
Error term (stochastic term, disturbance)      1 3—6
Error term (stochastic term, disturbance), and errors in variables      209
Error term (stochastic term, disturbance), and qualitative dependent variable      199
Error term (stochastic term, disturbance), autocorrelation and      208—209 215—220
Error term (stochastic term, disturbance), forecasting errors and      197
Error term (stochastic term, disturbance), in distributed lag model      193—194
Error term (stochastic term, disturbance), in multiple regression analysis      165
Error term (stochastic term, disturbance), in recursive models      232—233
Error term (stochastic term, disturbance), in simple regression analysis      128 134—136 137—138
Error term, variance of, and heteroscedasticity      207 212
Errors in variables      209—210 221—222 226—227
ESS      see “Error sum of squares”
Estimate(s), defined      76
Estimate(s), error of the      79 130—131 155
Estimate(s), in descriptive statistics      25 27
Estimate(s), in simple regression analysis      128—130 (see also “Specific types of estimates and estimators”)
Estimated demand function      6
Estimated parameters, functional form and      186—187
Estimated parameters, in multiple regression analysis      172—173
Estimation      1 2 67—86
Estimation, confidence intervals for the mean, using t distribution      70—71 81—84 86
Estimation, indirect least squares      229—230 235—237 240—241
Estimation, sampling      67 71—72 84
Estimation, sampling distribution of the mean      67—69 72—76 84
Estimation, two-stage least squares in      230 237—238 241
Estimation, using normal distribution      69—70 76—81 85
Estimator(s), defined      76
Estimator(s), in multiple regression analysis      154
Estimator(s), in simple regression analysis      140—141 (see also “Specific types of estimates and estimators”)
Eviews      268—269 277—282 292
Exact limits (class boundaries)      18
Exact linear relationship      128 172—173
Exactly identified equations      229—230 233—235
Exogenous variables      228—230
Expected frequencies      90—92 104—109
Expected value, in binomial distribution      40 51 54—55 64
Expected value, of continuous probability distribution      57
Expected value, of error term in simple regression analysis      128
Expected value, of Poisson distribution      55 65
Explained variation (regression sum of squares)      110—115 132 144 157
Explanatory variables      see “Independent variables”
Exponential distribution      42 61—62
F distribution      110
F distribution, heteroscedasticity and      207—208
F distribution, in hypothesis testing      92—93 109—110
F distribution, in multiple regression analysis      158
F ratio      92—93 109—110 158 171—172
F, value of      313
Finite correlation factor      68 73
Finite population      67 73
First-order autocorrelation      208—209 215—220
Fitting a line      128—129 134—135
Fixed format      266 271
Forecast-error variance      183—184 197—198
Forecasting      4 6 7 183—184 197—198 205
Fourth moment      15
Frequency distributions      1 9—10 16—19 33 104—106
Frequency polygon      1 9 17—19
Functional form      181—182 186—189 202
Gauss — Markov theorem      133 148
Geometric mean      11 22—23
Goldfield — Quandt test for heteroscedasticity      213
Goodness of fit, chi-square test of independence and      90—92 104—109 120—121
Goodness of fit, in hypothesis testing      109
Goodness of fit, in simple regression analysis      132—133 144—147 153
Grand mean      92 109—115
Granger causality      248—249 260—262 264—265
Grouped data      11—14 19—29 51—52
Harmonic mean      11 23
Heteroscedasticity      207—208 212—215 223—225
High multicollinearity      210
histogram      1 9 16—19
Homoscedastic disturbances      212
Hypergeometric distribution      40 55
Hypothesis testing      71—72 87—127
Hypothesis testing, about population mean and proportion      87—89 96—101 119—120 “Simple
Hypothesis testing, analysis of variance in      92—93 109—115 122
Hypothesis testing, chi-square test of goodness of fit and independence in      90—92 104—109 120—122
Hypothesis testing, defined      1 2 71—72 87 95—96 119
Hypothesis testing, for differences between two means or proportions      89—90 101—104 120
Hypothesis testing, overall significance of regression in      171
Identification      229 233—235 239—240
ILS (indirect least squares)      229—230 235—237 240—241
Income elasticity      140—141 175—178 181—182 187
Inconsistent estimators      see “Biased estimates”
Independent (explanatory) variables      1 4 6 38
Independent (explanatory) variables, and errors in variables      221—222
Independent (explanatory) variables, autocorrelation and      208 216—217
Independent (explanatory) variables, binomial and Poisson distributions and      55—56
Independent (explanatory) variables, exogenous variables as      228—229
Independent (explanatory) variables, heteroscedasticity and      207—208 212—215
Independent (explanatory) variables, hypothesis testing and      90—92 104—105
Independent (explanatory) variables, in distributed lag models      193
Independent (explanatory) variables, in forecasting      197 (see also “Forecasting”)
Independent (explanatory) variables, in simple regression analysis      128 134—136
Independent (explanatory) variables, lagged      209—210 221—222
Independent (explanatory) variables, multicollinearity and      206—207 210—212
Independent (explanatory) variables, multiple regression analysis      154 161
Independent (explanatory) variables, multiplication for      38 44—49
Independent (explanatory) variables, qualitative dependent variables and      184
Independent (explanatory) variables, qualitative, dummy variables as      182 189—193 203—204
Indirect least squares (ILS)      229—230 235—237 240—241
Inductive reasoning      2
Inferential statistics      1—3 (see also “Estimation” “Hypothesis
Infinite population      74 84
Instrumental variables      209—210 221—222
Interquartile range      13 24
Interval estimates      69—70 76—81
Inverse least squares      222
Joint moment      16
Joint probability      38
Kolmogorov — Smirnov test      94—95 118—119 123
Koyck lag model      183 193—194 204
Kruskal — Wallis test      94 117—118 123
kurtosis      15—16 31 35
Lack of bias      147—149
Lagged variables      209—210 221—222
Left-tail test      88 98 102
Leptokurtic curve      15 31
Likelihood function      199
Likelihood ratio index      185—186 200
Linear regression analysis      128 134
Linear relationship      154
Log-likelihood function      184 198—199
Logistic function (logit)      184—185
Logit model (logistic function)      184—185 199—200
Marginal effect      185 200 205
Mathematics      1 4 7
Matrix notation      159—160 173—175 179
Maximum likelihood      184 199
Mean absolute deviation (MAD)      13
Mean(s)      11 12
Mean(s), and analysis of variance      92
Mean(s), confidence interval for the, using t distribution      70—71 81—84 86
Mean(s), hypothesis testing for differences between two proportions or      89—90 101—104 120
Mean(s), in binomial distribution      39 54—55
Mean(s), in descriptive statistics      15—16 19—24
Mean(s), in normal distribution      41—42
Mean(s), in Poisson distribution      40 57—58
Mean(s), in simple regression analysis      141—142 (see also “Estimation Expected “Specific
Mean(s), of error term in simple regression analysis      128
Mean(s), of normal distribution as a continuous probability distribution      57—58
Mean(s), sampling distribution of the      see “Sampling distribution of the mean”
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå