|
|
Авторизация |
|
|
Поиск по указателям |
|
|
|
|
|
|
|
|
|
|
Jain A.K., Dubes R.C. — Algorithms for clustering data |
|
|
Предметный указатель |
Segmentation, multispectral images 235
Segmentation, range images 232
Sensitivity, hierarchical structure 79
Shaffer, E. 91 20
Shanley. R. J. 223
Shape from shading 232
Shape of cluster 2-3
Shapiro, I. B. 202
Shepard diagram 48
Shepard, R. N. 42 47 48 53
Shepard, R. N., 56
Shiien, S. 119 235
Shimura 123
Shore, H. 159
Short. R. D. 3
Shreider, Y. A. 155
Sibson, R. 5 64 69 77 79 125 138
Siemiatycki, J. 153
Silverman, B. W. 118 160 214
Similarity 11 14
Simon, J. C. 6
Simple matching coefficient 17
Simple matching coefficient, between binary vectors 20
Simple matching coefficient, distribution of 20
Simple sequential inhibition 208
Simple simulated annealing 39
Simple single-link cluster as connected subgraph 64
Singh, K. 160
Single-link clustering chaining 65
Single-link clustering chaining and connected subgraphs 62
Single-link clustering chaining, in range image segmentation 233
Single-link dendrogram, cophenetic matrix 68
Single-link hierarchy and relative criteria 161
Single-link method, agglomerative algorithm 61
Single-link method, characterization 65
Single-link method, difference from complete-link 74
Single-link method, divisive algorithm 70
Single-link method, graph theory algorithms 60
Single-link method, Hubert’s algorithm 63
Single-link method, matrix updating algorithm 72
Single-link method, MST-based algorithm 70
Siromoney, G. 223
Size, test of hypothesis 146-47
Sloane, N. J. A. 210
Smith, S. P. 137 202 203 207 214
Smith, S. P., 247
Sneath, P. H. A. 5 9 19 57 80 86 182
Sokal, R. R. 5 9 19 57 80 86
Sokal, R. R., 123
Sokal, R. R., E 53
Solomon, H. 34 91
Sorted matrix approach 74
Sparse sampling 218
Spatiai filtering 227
Spatial pattern 158
Spatial point process 202-203
Spatial point process and spatial randomness 202
Spatial point process, estimating density function for 160
Spatial point process, generating clustered data 273
Spatial point process, in estimating intrinsic dimensionality 46
Spatial randomness 201-2
Square-error and Ward’s method 81-82
Square-error clustering of LANDS AT images 236
Square-error clustering, criteria 92
Square-error clustering, methods 96
Square-error clustering, objectives 93
Square-error clustering, programs 101
Square-error clustering, updating the partition 97
Square-error criterion, basis vectors 33
Square-error, decomposition by features 102
Square-error. for cluster 93
Srivastava, J. N. 45
SSI process 208
Stability 137
Star cluster 2
Statistic, corrected for chance 175
Statistic, Cox - Lewis 219
Statistic, description, i 44
Statistic, Fowlkes and Mailows 174
Statistic, Goodman - Kruskal 153
Statistic, Hopkins 218
Statistic, Hubert’s 148
Statistic, in test of hypothesis 145
Statistic, Jaccard 174 176-77
Statistic, Kendall’s 167
Statistic, Rand 174
Statistic, threshold for 147
Statistic, Wilks’s lambda 35 158
Statistical decision theory 242
Statistical packages 134
Statistical pattern recognition 241
Steepest descent method 94
Stenson, H. H. 51
Stephenson, W. 5 57
Stepp, R. E., HI 92 224
Stimulus-response data 52
Stirling number 91
Stockman, G. 224 238 239 240 245
Stopping criterion in multidimensional scaling 50
Stopping rule 184-85
Stored data approach 74
Stored matrix approach 74
Strauss, D. J. 214
Strauss, J. S. 137
Stress for curve 48
Stress, in MDSCAL 47
Stress, in Sammon’ projection 38
Strong, J. P. 101
Structural graphs 214
Structure, a priori 148
Structure, a priori, chained 141
Structure, a priori, clustering 146 148
Structure, a priori, imposed 134
Structure, a priori, nonrandom 146 158
Structure, a priori, test for 162
Structure, a priori, visual perception of 37
Subgraph, (k,r)-bonded 87
Subgraph, (k-r)-connected 87
Subgraph, definition 268
Subgraph, r-connected 87
Subkoviak, I. I. 153 176
Sup distance 15
Supervised learning 242
Symons, M. J. 117 118
Syntactic pattern recognition 129 243
Tanernura 202 211
Taxi cab distance 15
Taxonomy 170
Template matching 23 238
Tenenbaum, J. H. 232
Test for nonrandom structure 162
Test for randomness, categories of 211
Test for randomness, categories of and scaling 213
| Test for randomness, categories of with ordinal data 221
Test for spatial randomness 211
Test for splitting a cluster 179
Test of hypothesis 145
Test of hypothesis, using Hubert’s statistic 149
Textural qualities 227
Texture 227
Texture segmentation 229-31
Thomason, M. G. 243
Three-dimensional object recognition 232
Threshold dendrogram 62
Threshold dendrogram, example 168
Threshold dendrogram, level function for 66
Threshold for stress in MDSCAL 51
Threshold graph 60 272
Threshold graph and node coloring 71
Threshold graph with ties 77
Threshold graph, in hierarchical clustering 62-64
Threshold, in Monte Carlo analysis 158
Threshold, in test for nonrandom structure 162
Threshold, in test of hypothesis 146
Threshold, on attribute values 4
Threshold, to define "large" 148
Ties in proximity 76
Ties in proximity with ambiguity in dendrograms 81
Ties in proximity, seriousness of 78
Tilton, J. C. 101
TitteringtoiJ, D. 117
Tomita, S. 36
Topological dimensionality 42
Torgerson. W. S. 47
Torn, A. 1 119
Torus topology 208 210
Total scatter matrix 94
Tou, J. 34
Toussain1, G. 24 243
Trace and square-error criterion 94
TREE 270
Triangle inequality 14
Triangle inequality and random graph hypothesis 145
Triangulation 41
Triangulation, and Sammon’s projection 41
Triangulation, Delaunay 125
Triangulation, reference point approach to 41
Triangulation, second nearest-neighbor approach to 41
True number of clusters, estimating 177
Trunk, G. V. 46
Tryon. R. C. 5
Tsokos, C. P. 20
Tuceryan 128
Tukey, J. W. 42
Tversky, A. 15
Tzeng, I. C. S. 53
Ultrametric cophenetic matrix and monotonicity 83
Ultrametric inequality 69
Ultrametric inequality and cophenetic matrix 84
Ultrametric inequality and ties in proximity 76
Ultrametric inequality, and perfect hierarchical structure 83
Ultrametric inequality, geometric interpretation 69
Ultrametric matrix 166
Ultrametricity 68
Ultrametricity and monotonicity 70
Ultrametricity, in physics 69
Unbiased estimate in Monte Carlo sampling 156
Unfolding data 44
Unimodal clusters 119
Unsupervised learning and intrinsic classification 56
Unsupervised learning and mixture decomposition 117
Unsupervised learning, in statistical pattern recognition 242
Unweighted centroid clustering method 80
Unweighted method 79
UPGMA clustering method 80
UPGMA clustering method and CPCC 167
UPGMC clustering method 80
UPGMC clustering method and monotonicity 85
Urquhart, R. 91 123 128
Valid cluster 188 192
Valid cluster, at level N. 190
Validating clustering algorithms with MANOVA 264
Validity of clusters 188-201
Validity of hierarchical structures 165-72
Validity of partitional structures 172 88
Van Ness, J, W. 137 138
Van Ryzin. J. 6
Variance retained in projection 27
Vidal, J. J. 44 45
Vinod, H. D 91
Visual perception and clustering 8
Volume of sphere 208
Voronoi diagram 125
Wald - Wolfowitz run test 214
Wang, D. K. 42
Wang, D. N. C 92
Wang, P. S. P. 223
Ward, J. H., Jr 81
Ward’s method 80-83
Ward’s method and partitional clustering 92
Weeks, D. G. 53
Weighted average clustering method 80
Weighted centroid clustering method 80
Weiss, J. 39
Weszka, J. 226
Wharton, S. W. 119 235
Whitney, C. A 159
Wiiks, S. S. 34 81 144 179
Wilks’s lambda statistic 35 158
Williams, W. 56 79 80 86
Wilpon, J. G. 224
Wintz, P. 224
WISH 53
Wishart, D. 64
Wismath, S. K. 41
Within-cluster scatter matrix 94 259
Within-cluster sum of squares 93
Within-cluster variation 93-94
Within-group similarities 4
Wolfe, J. H. 117
Wong, A. K. C. 92 119 223
Wong, M. A. 120
WPGMA clustering method 80
WPGMC clustering method 80
WPGMC clustering method and monotonicity 85
Wright, W. E. 138
Wyse, N 44
Yolkina, V, N. 19
Young, F. W. 47
Z-score and inconsistent edges 121
Zadeh, L. A. 131
Zagoruiko, N. G. 19
Zahn 41 91 117 121
Zahn’s clustering algorithm 121
Zeng, G. 202 207 219 220 221
Zimmerman, R. 223
|
|
|
Реклама |
|
|
|