Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Jain A.K., Dubes R.C. — Algorithms for clustering data
Jain A.K., Dubes R.C. — Algorithms for clustering data



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Algorithms for clustering data

Авторы: Jain A.K., Dubes R.C.

Язык: en

Рубрика: Математика/Вероятность/Статистика и приложения/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 1

Год издания: 1988

Количество страниц: 320

Добавлена в каталог: 04.06.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Segmentation, multispectral images      235
Segmentation, range images      232
Sensitivity, hierarchical structure      79
Shaffer, E.      91 20
Shanley. R. J.      223
Shape from shading      232
Shape of cluster      2-3
Shapiro, I. B.      202
Shepard diagram      48
Shepard, R. N.      42 47 48 53
Shepard, R. N.,      56
Shiien, S.      119 235
Shimura      123
Shore, H.      159
Short. R. D.      3
Shreider, Y. A.      155
Sibson, R.      5 64 69 77 79 125 138
Siemiatycki, J.      153
Silverman, B. W.      118 160 214
Similarity      11 14
Simon, J. C.      6
Simple matching coefficient      17
Simple matching coefficient, between binary vectors      20
Simple matching coefficient, distribution of      20
Simple sequential inhibition      208
Simple simulated annealing      39
Simple single-link cluster as connected subgraph      64
Singh, K.      160
Single-link clustering chaining      65
Single-link clustering chaining and connected subgraphs      62
Single-link clustering chaining, in range image segmentation      233
Single-link dendrogram, cophenetic matrix      68
Single-link hierarchy and relative criteria      161
Single-link method, agglomerative algorithm      61
Single-link method, characterization      65
Single-link method, difference from complete-link      74
Single-link method, divisive algorithm      70
Single-link method, graph theory algorithms      60
Single-link method, Hubert’s algorithm      63
Single-link method, matrix updating algorithm      72
Single-link method, MST-based algorithm      70
Siromoney, G.      223
Size, test of hypothesis      146-47
Sloane, N. J. A.      210
Smith, S. P.      137 202 203 207 214
Smith, S. P.,      247
Sneath, P. H. A.      5 9 19 57 80 86 182
Sokal, R. R.      5 9 19 57 80 86
Sokal, R. R.,      123
Sokal, R. R., E      53
Solomon, H.      34 91
Sorted matrix approach      74
Sparse sampling      218
Spatiai filtering      227
Spatial pattern      158
Spatial point process      202-203
Spatial point process and spatial randomness      202
Spatial point process, estimating density function for      160
Spatial point process, generating clustered data      273
Spatial point process, in estimating intrinsic dimensionality      46
Spatial randomness      201-2
Square-error and Ward’s method      81-82
Square-error clustering of LANDS AT images      236
Square-error clustering, criteria      92
Square-error clustering, methods      96
Square-error clustering, objectives      93
Square-error clustering, programs      101
Square-error clustering, updating the partition      97
Square-error criterion, basis vectors      33
Square-error, decomposition by features      102
Square-error. for cluster      93
Srivastava, J. N.      45
SSI process      208
Stability      137
Star cluster      2
Statistic, corrected for chance      175
Statistic, Cox - Lewis      219
Statistic, description, i      44
Statistic, Fowlkes and Mailows      174
Statistic, Goodman - Kruskal $\gamma$      153
Statistic, Hopkins      218
Statistic, Hubert’s $\Gamma$      148
Statistic, in test of hypothesis      145
Statistic, Jaccard      174 176-77
Statistic, Kendall’s $\tau$      167
Statistic, Rand      174
Statistic, threshold for      147
Statistic, Wilks’s lambda      35 158
Statistical decision theory      242
Statistical packages      134
Statistical pattern recognition      241
Steepest descent method      94
Stenson, H. H.      51
Stephenson, W.      5 57
Stepp, R. E., HI      92 224
Stimulus-response data      52
Stirling number      91
Stockman, G.      224 238 239 240 245
Stopping criterion in multidimensional scaling      50
Stopping rule      184-85
Stored data approach      74
Stored matrix approach      74
Strauss, D. J.      214
Strauss, J. S.      137
Stress for curve      48
Stress, in MDSCAL      47
Stress, in Sammon’ projection      38
Strong, J. P.      101
Structural graphs      214
Structure, a priori      148
Structure, a priori, chained      141
Structure, a priori, clustering      146 148
Structure, a priori, imposed      134
Structure, a priori, nonrandom      146 158
Structure, a priori, test for      162
Structure, a priori, visual perception of      37
Subgraph, (k,r)-bonded      87
Subgraph, (k-r)-connected      87
Subgraph, definition      268
Subgraph, r-connected      87
Subkoviak, I. I.      153 176
Sup distance      15
Supervised learning      242
Symons, M. J.      117 118
Syntactic pattern recognition      129 243
Tanernura      202 211
Taxi cab distance      15
Taxonomy      170
Template matching      23 238
Tenenbaum, J. H.      232
Test for nonrandom structure      162
Test for randomness, categories of      211
Test for randomness, categories of and scaling      213
Test for randomness, categories of with ordinal data      221
Test for spatial randomness      211
Test for splitting a cluster      179
Test of hypothesis      145
Test of hypothesis, using Hubert’s $\Gamma$ statistic      149
Textural qualities      227
Texture      227
Texture segmentation      229-31
Thomason, M. G.      243
Three-dimensional object recognition      232
Threshold dendrogram      62
Threshold dendrogram, example      168
Threshold dendrogram, level function for      66
Threshold for stress in MDSCAL      51
Threshold graph      60 272
Threshold graph and node coloring      71
Threshold graph with ties      77
Threshold graph, in hierarchical clustering      62-64
Threshold, in Monte Carlo analysis      158
Threshold, in test for nonrandom structure      162
Threshold, in test of hypothesis      146
Threshold, on attribute values      4
Threshold, to define "large"      148
Ties in proximity      76
Ties in proximity with ambiguity in dendrograms      81
Ties in proximity, seriousness of      78
Tilton, J. C.      101
TitteringtoiJ, D.      117
Tomita, S.      36
Topological dimensionality      42
Torgerson. W. S.      47
Torn, A.      1 119
Torus topology      208 210
Total scatter matrix      94
Tou, J.      34
Toussain1, G.      24 243
Trace and square-error criterion      94
TREE      270
Triangle inequality      14
Triangle inequality and random graph hypothesis      145
Triangulation      41
Triangulation, and Sammon’s projection      41
Triangulation, Delaunay      125
Triangulation, reference point approach to      41
Triangulation, second nearest-neighbor approach to      41
True number of clusters, estimating      177
Trunk, G. V.      46
Tryon. R. C.      5
Tsokos, C. P.      20
Tuceryan      128
Tukey, J. W.      42
Tversky, A.      15
Tzeng, I. C. S.      53
Ultrametric cophenetic matrix and monotonicity      83
Ultrametric inequality      69
Ultrametric inequality and cophenetic matrix      84
Ultrametric inequality and ties in proximity      76
Ultrametric inequality, and perfect hierarchical structure      83
Ultrametric inequality, geometric interpretation      69
Ultrametric matrix      166
Ultrametricity      68
Ultrametricity and monotonicity      70
Ultrametricity, in physics      69
Unbiased estimate in Monte Carlo sampling      156
Unfolding data      44
Unimodal clusters      119
Unsupervised learning and intrinsic classification      56
Unsupervised learning and mixture decomposition      117
Unsupervised learning, in statistical pattern recognition      242
Unweighted centroid clustering method      80
Unweighted method      79
UPGMA clustering method      80
UPGMA clustering method and CPCC      167
UPGMC clustering method      80
UPGMC clustering method and monotonicity      85
Urquhart, R.      91 123 128
Valid cluster      188 192
Valid cluster, at level N.      190
Validating clustering algorithms with MANOVA      264
Validity of clusters      188-201
Validity of hierarchical structures      165-72
Validity of partitional structures      172 88
Van Ness, J, W.      137 138
Van Ryzin. J.      6
Variance retained in projection      27
Vidal, J. J.      44 45
Vinod, H. D      91
Visual perception and clustering      8
Volume of sphere      208
Voronoi diagram      125
Wald - Wolfowitz run test      214
Wang, D. K.      42
Wang, D. N. C      92
Wang, P. S. P.      223
Ward, J. H., Jr      81
Ward’s method      80-83
Ward’s method and partitional clustering      92
Weeks, D. G.      53
Weighted average clustering method      80
Weighted centroid clustering method      80
Weiss, J.      39
Weszka, J.      226
Wharton, S. W.      119 235
Whitney, C. A      159
Wiiks, S. S.      34 81 144 179
Wilks’s lambda statistic      35 158
Williams, W.      56 79 80 86
Wilpon, J. G.      224
Wintz, P.      224
WISH      53
Wishart, D.      64
Wismath, S. K.      41
Within-cluster scatter matrix      94 259
Within-cluster sum of squares      93
Within-cluster variation      93-94
Within-group similarities      4
Wolfe, J. H.      117
Wong, A. K. C.      92 119 223
Wong, M. A.      120
WPGMA clustering method      80
WPGMC clustering method      80
WPGMC clustering method and monotonicity      85
Wright, W. E.      138
Wyse, N      44
Yolkina, V, N.      19
Young, F. W.      47
Z-score and inconsistent edges      121
Zadeh, L. A.      131
Zagoruiko, N. G.      19
Zahn      41 91 117 121
Zahn’s clustering algorithm      121
Zeng, G.      202 207 219 220 221
Zimmerman, R.      223
1 2 3 4 5
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте