Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Jain A.K., Dubes R.C. — Algorithms for clustering data
Jain A.K., Dubes R.C. — Algorithms for clustering data



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Algorithms for clustering data

Авторы: Jain A.K., Dubes R.C.

Язык: en

Рубрика: Математика/Вероятность/Статистика и приложения/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 1

Год издания: 1988

Количество страниц: 320

Добавлена в каталог: 04.06.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Monte Carlo studies with MH statistic      187
Monte Carlo studies, in comparative analysis      139
Monte Carlo tests of cluster analysis      140
Monte Carlo trials      156 159
Moore, L. R.      159
Moreau, J. V.      160
MST      see Minimum spanning tree
MST-based clustering in image segmentation      233
Mucciardi, A. N.      119
MUI      1
Mui, K.      226 243
Muitiband imagery data      40
Multidimensional scaling      46-53
Multidimensional scaling, in clustering methodology      136
Multivariate analysis of variance      264
Multivariate normality      247
Mutual nearest neighbor clustering in image segmentation      233
Mutual neighborhood clustering algorithm      129
Mutual neighborhood value      129
Naming axes in MDSCAL      52
Narendra, P.      3 119 235 243
Naus, J. I.      212
Near-neighbor distribution and sampling window      219
Near-neighbor distribution for hard-core models      210
Near-neighbor distribution, to estimate intrinsic dimensionality      46
Nearest neighbor and missing data      19
Nearest neighbor distance      129
Nearest neighbor distance and tests for randomness      215
Nearest neighbor distance, pattern-to-pattern      217
Nearest-neighbor clustering algorithms      128
Nearest-neighbor decision rule      3
Nearest-neighbor density estimation      118
Nearest-neighbor method, pattern density      120
Nearest-neighbor rule in pattern recognition      242
Nearest-neighbor, shared      129
Neighborhood depth      129
Neighborhood size      129
Nested partition      58
Neyman - Scott process      207
Neyman, J.      207 273
Ni, L.      101
Nicholls, P.      59
Niemann, H.      39
Node coloring      71
Node coloring and complete-link clustering      72
Node connectivity      86
Node degree      86
Node degree and test for randomness      221
Nominal data type      16
Nominal scale      12
Nonlinear projection      37-42
Nonparametric maximum likelihood estimation      160
Nonrandom structure, test for      162
Norma1 distribution, sampling      159
Normality of Hubert’s $\Gamma$ statistic      153
Normalization of data      23-25
Null distribution, Hubert’s $\Gamma$ statistic      175
Null population, eightyX data      164
Number of clusterings      90
Number of clusters, from clustering algorithms      138
Number of clusters, from DB statistic      186
Number of clusters, from knee in square-error curve      105
Number of clusters, from MH statistic      187
Number of components in graph      272
Number of features and intrinsic dimensionality      43
Numerical taxonomy      167
Object detection via image registration      238
Odell, P. L.      5 117
Ogata, Y.      202 211
Ogilvie, J. C.      139 167
Ohlander, R.      226
Okada      36
Olsen, D. R.      45
Ordination      47
Orthogonal matrix      253
Osmer, P. S.      211
Outlier, in comparative analysis      138
Outlier, in FORGY program      101
Outlier, in hierarchical clustering      81
Outlier, in MDSCAL program      51
Outlier, in partitional clustering      98
Overlap of clusters      274
Overlapping classification      56
Overlapping clusters and fuzzy clustering      131
Packing density      208
Pair group method      79
Panayirci, E.      202 217 218
Panayirci, E.,      219
Parallel processing and partitional clustering      1
Parametric classification      243
Partition      58
Partition function for Gibbs process      211
Partition ranks      168
Partitional classification      57
Partitional clustering      89-133
Partitional clustering and image segmentation      226-27
Partitional clustering Forgy’s method      97
Partitional clustering method, iterative      96
Partitional clustering of textured image      227
Partitional clustering problem, statement      90
Partitional clustering, fuzzy algorithm      133
Partitional clustering, iterative algorithm      96
Partitional clustering, McQueen’s K-means method      97
Parzen window      118 120
Patrick, E. A.      129
Pattern      8
Pattern matrix      8
Pattern recognition      241-45
Pattern space      8
Peay, E, R.      65
Perceived similarity      11
Percentile frame      221
Perceptual grouping      41
Perfect cluster      190
Perfect hierarchical structure      68
Perfect hierarchical structure and ultrametric inequality      83
Periodic boundaries      207-208
Permutation and random label hypothesis      144- 45
Permutation statistic      22
Permutation with Hubert’s $\Gamma$ statistic      148-50
Pettis, K.      44 46
Pietou, E. C.      212
Pixel      225
Point serial correlation      148
Point serial correlation coefficient      186
Poisson process and random position hypothesis      145
Poisson process, as spatial point process      203
Poisson process, in clustering tendency      219
Poisson process, in quadrat analysis      212
Poisson process, nearest-neighbor distribution      218
Poisson random variable, sampling      159
Pollard, D.      100
Population correlation coefficient      247
Population moments      247
Positive-definite matrix and proximity index      17
Potential function      211
Power of test of hypothesis      146-48
Pratt, J. W.      250
Preparata, F. P.      125
Prim, R, C.      271
Prim’s algorithm      271
Principal component, in factor analysis      260
Principal component, in factor analysis, projection      26
Principal component, in factor analysis, significance from bootstrapping      160
Probabilistic index of similarity      20
Probability density estimate      118
Probability profile      195-96
Processing time for partitional clustering      101
Product moment correlation coefficient      166
Projection algorithm      25
Projection by discriminant analysis      35
Projection pursuit algorithm      42
Proximity dendrogram      62 66
Proximity graph      66
Proximity index      14 23
Proximity index and missing data      19
Proximity index, binary      12
Proximity index, continuous      12
Proximity index, discrete      12
Proximity index, dissimilarity      11
Proximity index, matching coefficient      16
Proximity index, nominal type      16
Proximity index, ratio type      14
Proximity index, similarity      11
Proximity matrix      11
Proximity matrix, ordinal      145
Proximity matrix, rank order      145
Proximity matrix, symmetry      11
Proximity ranks      168
Proximity, cophenetic      see Cophenetic proximity
Pseudorandom samples      159
Pykett, N. E.      39
Q-mode clustering      9
Quadrat analysis      212
Qualitative scale      12
Quantitative scale      12
Questionnaire data      17 20 23
R-chain      87
R-connected subgraph      87
R-mode clustering      9
Rabiner, L. R.      223
Radius of subgraph      87
Rafsky, L. C.      59
Rammal, R.      69
Ramsay, J. O.      52 53
Rand statistic      174
Rand statistic, corrected for chance      175-77
Rand statistic, in comparative analysis      140
Rand, W.      174
Random graph      272
Random graph and cluster validity      194
Random graph hypothesis and global fit of hierarchy      167
Random graph hypothesis and internal indices of cluster validity      192-94
Random graph hypothesis with external indices of cluster validity      189
Random graph hypothesis with MDSCAL      51
Random graph hypothesis, and cluster lifetime      197
Random graph hypothesis, in testing hypothesis      144-45 149
Random label hypothesis with Hubert’s $\Gamma$ statistic      151 53
Random label hypothesis, and internal index of cluster validity      163
Random label hypothesis, in testing hypothesis      144 45 149
Random position hypothesis, and 80X data      164
Random position hypothesis, and 80X data and spatial point process      202-203
Random position hypothesis, and 80X data and testing hypothesis      144 45
Random threshold graph      272
Random variable      144
Rank correlation      166-67
Rank graph      272
Rank order proximity matrix and $\gamma$ statistic      153
Rank, between-group scatter matrix      36
Rao, C. R      223
Rao, M. R.      91
Rao, V. R.      179
Rapoport, A.      221
Rasson, J. P.      207
Ratio scale      13
Reference population and validity of hierarchy      166
Reference population for random graph hypothesis      145
Region of influence      123
Register, D.      119
Regression lines, fit from bootstrapping      160
Regularity and spatial clustering      207
Regularly spaced patterns      202
Relative criteria      161
Relative error in Monte Carlo analysis      157
Relative index for clusters      200
Relative index for global fit of hierarchy      170
Relative index for partitional adequacy      183-88
Relative index, and best-case index      195
Relative neighbor      124
Relative neighbor graph and partitions      91
Relative neighbor graph, and clustering tendency      214
Relative neighbor graph, definition      123-24
Remote-sensing      117 119 223-25 227
Remote-sensing, resampling      159
Remote-sensing, residual correlations      261
Remote-sensing, reversal      84 86
Renyi, A.      221
Ripley, B. D.      202 203 207 208 210 211 212 214
Ripley’s K(t) function      212
Rogers, A.      212
Rohlf, F. J.      71 80 119 166
Rohlf, F. J.,      167
Romney, A. K.      47 52
Rosenfeld, A.      224
Ross, G. J. S.      71
Rubin, I.      34 94 97 108 138
Ruspini, E. H.      131
S clustering package      134
S-statistic      23
SAHN clustering algorithms      57
SAHN clustering algorithms and graph theory      87
SAHN clustering algorithms, monotonicity      84
SAHN clustering algorithms, table of coefficients      80
SAHN clustering algorithms, updating formula      79
Salton, G.      223
Sammon, J. W.      38
Sammon’s nonlinear projection      38
Sample correlation coefficient      16 148
Sample covariance matrix      16 252
Sample space      144
Sampling frame      207
Sampling origin      217-18
Sampling window and internal index of partitional adequacy      178
Sampling window and spatial point processes      202-3
Sampling window, in clustering tendency      220
Sampling window, in regular spatial point process      208
Sampling window, shape and size      207
Sanderson, A. C.      223
Saunders, R.      214
Scale, interval      13
Scale, nominal      12
Scale, ordinal      153
Scale, quantitative      153
Scale, ratio      13
Scaling by range      24
Scaling of features      24
Scan tests for randomness      211
Scatter matrix, decomposition      94
Scatter matrix, definitions      258-59
Scatter matrix, in partitional clustering      94
Scatter ratio      35
Scatter ratio, asymptotic Gaussian distribution for      182
Scatter, between-group      35
Scatter, between-group within-group      35
Scatter, between-group, geometrical interpretation      34
Scatter, between-group, maximizing      34
Scene analysis      224
Schachter, B. J.      40 228
Scher, A.      223
Schikhof, W. H.      69
Schilling, D. A.      140
Schultz, J. R.      148 153 175 221
Schwartzmann, D. H.      44 45
Scott, A. J.      117
Scott, E. L.      207 273
Sdim, S. Z.      99
Sdove, S. L.      117
Sebestyen, G. S.      34 119
Seed points      97
Seed points, in FORGY      101
1 2 3 4 5
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте