Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Kay S.M. — Fundamentals of statistical signal processing, volume 1: estimation theory
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Fundamentals of statistical signal processing, volume 1: estimation theory
Àâòîð: Kay S.M.
Àííîòàöèÿ: This text is geared towards a one-semester graduate-level course in statistical signal processing and estimation theory. The author balances technical detail with practical and implementation issues, delivering an exposition that is both theoretically rigorous and application-oriented. The book covers topics such as minimum variance unbiased estimators, the Cramer-Rao bound, best linear unbiased estimators, maximum likelihood estimation, recursive least squares, Bayesian estimation techniques, and the Wiener and Kalman filters. The author provides numerous examples, which illustrate both theory and applications for problems such as high-resolution spectral analysis, system identification, digital filter design, adaptive beamforming and noise cancellation, and tracking and localization. The primary audience will be those involved in the design and implementation of optimal estimation algorithms on digital computers. The text assumes that you have a background in probability and random processes and linear and matrix algebra and exposure to basic signal processing. Students as well as researchers and practicing engineers will find the text an invaluable introduction and resource for scalar and vector parameter estimation theory and a convenient reference for the design of successive parameter estimation algorithms.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /Âåðîÿòíîñòü /Ñòàòèñòèêà è ïðèëîæåíèÿ /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1993
Êîëè÷åñòâî ñòðàíèö: 595
Äîáàâëåíà â êàòàëîã: 04.06.2005
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
ACF (see Autocorrelation)
Adaptive beamforming 544—48
Adaptive filters (see Least squares sequential)
Adaptive filters, Analytic signal 497 551
Adaptive filters, Kalman 439
Adaptive filters, noise canceler 268—73
ar (see Autoregressive)
ARMA (see Autoregressive moving average)
Asymptotic, Cramer — Rao lower bound 51 77—81
Asymptotic, efficiency 38—39 160 164
Asymptotic, Gaussian PDF, complex 535
Asymptotic, Gaussian PDF, real 80
Asymptotic, mean and variance 295 301—2 305-6
Asymptotic, MLE 190
Asymptotic, probability density function of MLE 164
Asymptotic, unbiasedness 38 160
Autocorrelation method of linear prediction 198
Autocorrelation, definition 575
Autocorrelation, estimator 197 204 267
Autoregressive (see also Linear predictive coding)
Autoregressive moving average, definition 266
Autoregressive moving average, dynamic model 468
Autoregressive moving average, estimation 266—68
Autoregressive, definition 59—60 578
Autoregressive, MLE 196—98
Autoregressive, ORLB 59—62
Autoregressive, power spectral density, complex process 497—98
Autoregressive, prediction 414
Bayesian 484—85
Beamforming, conventional 547
Bearing estimation 3 57—59 195—96
Bernoulli trial 123 200
Best linear unbiased estimator, complex data 523—24
Best linear unbiased estimator, covariance errors 150
Best linear unbiased estimator, definition 134 137 139—40
Best linear unbiased estimator, derivation 151—55
Best linear unbiased estimator, linear model 141
Best linear unbiased estimator, transformations 135 147 149—50
Bias error 18
Biomedical signal processing 23
blue (see Best linear unbiased estimator)
CCF (see Cross-correlation)
Chirp rate estimator 553
Communications, channel equalization 365
Communications, coherent demodulation 273
Communications, on-off keying 148
Complete sufficient statistic 109—12 119
Complex envelope 494
Conditional mean estimator (see Minimum mean square error estimator Bayesian)
Consistency, estimator 24 161 200
Correlation coefficient, conditional Gaussian PDF 323
Correlation coefficient, CRLB 66
Correlation coefficient, definition 64
Correlation coefficient, least squares 241
Correlation coefficient, MLE 200 304
Correlation time 50 77—78 535
Correlator, signal 192
Cost function 342
Covariance matrix, complex, definition 501
Covariance matrix, complex, properties 505—6 555—57
Cramer-Rao lower bound, asymptotic 51 77—81
Cramer-Rao lower bound, complex Gaussian 525
Cramer-Rao lower bound, definition 22 30 39—40 44
Cramer-Rao lower bound, Gaussian PDF 47—48
Cramer-Rao lower bound, signals in WGN 36 48
Cramer-Rao lower bound, transformed parameters 37 45
CRLB (see Cramer-Rao lower bound)
Cross-correlation 514 575
Cross-power spectral density 576—77
Curve fitting, CRLB 65
Curve fitting, least squares 232—35
Curve fitting, linear model 86—88
CWGN (see White Gaussian noise complex)
Cyclical data (see Sinusoidal estimation)
DC level in noise (see Examples)
DC level in noise, Deconvolution 365—70
DC level in noise, definition 31
Derivative, complex 499—500 517 519—21
Detection, jump in level 278
Detection, sinusoidal 98—99 148—49 554
DFT (see Discrete Fourier transform)
Digital filter design, equation error 261—65
Digital filter design, least squares 280—81
Discrete Fourier transform, normalization of 511
Discrete Fourier transform, orthogonality 89 569—70
Discrete Fourier transform, PDF for WGN 509—11 537
Dispersive channel 452
Efficiency, estimator 34 38—39 84—86 160 167 187 528
Eigenanalysis of covariance matrix 147—48 537
Eigenvalue/eigenvector 573
em (see Expectation-maximization)
entropy 336
Equation error modeling 266
Error ellipse 364
Estimators, classical vs. Bayesian 8 309 312
Estimators, combining 17
Estimators, definition 9
Estimators, performance 9—12 24 295 mean
Estimators, selection, rationale for 489—90
Estimators, summary, classical 480—83
Examples, adaptive beamformer 544—48 5
Examples, adaptive noise canceler 268—73
Examples, autoregressive parameters in ARMA, LSE 266—68
Examples, autoregressive parameters, CRLB 59—62
Examples, autoregressive parameters, MLE 196—98
Examples, bandpass Gaussian noise 515—17
Examples, bearing, CRLB 57—59
Examples, bearing, MLE 195—96
Examples, channel estimation 452—56
Examples, covariance matrix scale factor, Bayesian estimation 329—30
Examples, curve fitting, MVU estimator 86—88
Examples, DC level and exponential in WGN, MVU estimator 96—97
Examples, DC level in colored noise, complex BLUE 523—24
Examples, DC level in colored noise, MVU estimator 95—96
Examples, DC level in noise, LSE 221
Examples, DC level in non — Gaussian noise 172—73
Examples, DC level in uncorrelated noise, BLUE 138—39
Examples, DC level in WGN, amplitude and variance sufficient statistics 118
Examples, DC level in WGN, amplitude and variance, MAP estimator 355—58
Examples, DC level in WGN, amplitude/variance, MLE 158—163
Examples, DC level in WGN, biased estimator 17
Examples, DC level in WGN, CRLB for amplitude 31—32
Examples, DC level in WGN, CRLB for amplitude and variance 40—41
Examples, DC level in WGN, CRLB for random amplitude variance 49—50
Examples, DC level in WGN, Gaussian prior, MMSE estimator 317—21 326—28 360-61
Examples, DC level in WGN, method of moments 291—92
Examples, DC level in WGN, MLE for amplitude and variance 183
Examples, DC level in WGN, MLE Monte Carlo performance 164—66
Examples, DC level in WGN, MVU amplitude and variance estimator from sufficient statistic 119—22
Examples, DC level in WGN, MVU amplitude estimator from sufficient statistic 107—109
Examples, DC level in WGN, sequential LMMSE estimator 392—93
Examples, DC level in WGN, sequential LSE 243—48
Examples, DC level in WGN, sufficient statistic 105
Examples, DC level in WGN, transformed parameter MLE 173—77
Examples, DC level in WGN, unbiased estimator 16
Examples, DC level in WGN, uniform prior, LMMSE estimator 383
Examples, DC level in WGN, uniform prior, MAP estimator 352—53
Examples, DC level in WGN. MLE for amplitude 163—64
Examples, DC level in WGN. uniform prior, MMSE estimator 315
Examples, DC level in white noise, BLUE 137—38
Examples, digital filter design, LSE 261—65
Examples, discrete Fourier transform, PDF of CWGN 535—37
Examples, discrete Fourier transform, PDF of WGN 509—11
Examples, estimator 298—99
Examples, exponential PDF parameter transformation, MAP estimator 358—59
Examples, exponential PDF parameter, MAP estimator 351—52
Examples, exponential PDF parameter, method of moments 292 295—97
Examples, exponential signal in WGN, MLE 178—82
Examples, exponential signal, LSE 257—58
Examples, Fourier analysis, Bayesian 347—49 362—64 399—400
Examples, Fourier analysis, LSE 226—27 230—31
Examples, Fourier analysis, MVU estimator 88—90
Examples, Fourier analysis, sequential LSE 250—51
Examples, frequencies of sinusoids, EM estimator 187—89
Examples, frequency of sinusoid, CRLB. 36
Examples, frequency of sinusoid, method of moments 299—304
Examples, frequency of WSS process, center, CRLB 51—53
Examples, Gauss — Markov model 427—28
Examples, Gaussian mixture parameters 290—91 293—94
Examples, Hermitian form, mean and variance 512—13
Examples, Hermitian function, minimization 521—23
Examples, identification of FIR system, MVU estimator 90—94
Examples, Kalman filter 436—38 443—45
Examples, line fitting, CRLB 41—43
Examples, line fitting, order-recursive LSE 237—40
Examples, linear model, classical complex 529—30
Examples, localization, source, BLUE 142—46
Examples, mean of uniform noise, MVU estimator 113—16
Examples, moving average, MLE 190—91
Examples, MVU estimator, possible nonexistence of 20—21
Examples, orthogonal random variables. LMMSE estimator 388—89
Examples, PDF parameter dependence 28—31
Examples, periodogram spectral estimation 538—39
Examples, phase of complex sinusoid, MLE 531—32
Examples, phase of sinusoid, CRLB 33—34
Examples, phase of sinusoid, MLE 167—72
Examples, phase of sinusoid, sufficient statistic 106—7
Examples, phase-locked loop 273—75
Examples, power of noise, CRLB 49
Examples, power of noise, sufficient statistic 105
Examples, range, CRLB 53—56
Examples, range, MLE 192
Examples, signal amplitude estimation, complex LSE 498—500
Examples, signal in non — Gaussian noise, MLE 184—85
Examples, signal in WGN, CRLB 48
Examples, signal, constrained LSE 252—54
Examples, signal-to-noise ratio. CRLB 46
Examples, sinusoidal amplitude, LSE 255—56
Examples, sinusoidal complex amplitude, MMSE estimator 534—35
Examples, sinusoidal modeling, complex 496—97
Examples, sinusoidal parameters, complex MLE 539—44
Examples, sinusoidal parameters, CRLB 56—57
Examples, sinusoidal parameters, LSE 222—23
Examples, sinusoidal parameters, MLE 193—95
Examples, sinusoidal parameters, sufficient statistics 117—18
Examples, sinusoidal power, complex MVU estimator 525—27
Examples, sufficient statistic verification 103—4
Examples, sufficient statistic, completeness of 110—11
Examples, sufficient statistic, incompleteness of 111—12
Examples, vehicle tracking 456—66
Examples, Wiener filtering 365—70 400—409 443-45
Expectation-Maximization 182 187—89
Exponential PDF family, definition (see Probability density functions)
Exponential PDF family, MLE 200
Exponential signals, estimation 257 58 298—99
Fading signal 100 452
Finite impulse response filter 90—94
FIR (see Finite impulse response filter)
Fisher information, decoupled matrix 41 65
Fisher information, definition 34 40
Fisher information, properties 35 65
Fourier analysis 88—90 226—27 250-51 347—49 362—64 399-400
Frequency estimation (see Sinusoidal estimation and Examples)
Gauss — Markov theorem 141 143 552
Gauss — Newton iteration 260
Gauss-Markov process, definition 421 426 430—31
Gauss-Markov process, properties 424 429
Gaussian random process 467 513 577—78
Gradient formulas 73—74 84 519—21
Gram — Schmidt orthogonalization 236 396 411
Grid search 177
Hermitian form, definition 502
Hermitian form, minimization 521—23
Hermitian form, moments 502—3 513
histogram 10 165 206—7 209
Image signal processing 365
In-phase signal 495—96
Innovations 396 433 441
interference suppression 270
Interpolation 412
Kalman filter, definition 436 446—49 455
Kalman filter, derivation 471—75
Kalman filter, extended 451—52 462 476—77
Kalman filter, gain 436 447
Kalman filter, information form 449
Kalman filter, steady state 443
Least squares, BLUE, relationship with 225
Least squares, constrained 252
Least squares, definition 220—21
Least squares, estimator 225
Least squares, modified Yule — Walker equations 268
Least squares, nonlinear 222 254
Least squares, numerical determination 259—60
Least squares, order-recursive 237 282—84
Least squares, separable 222—23 256—57
Least squares, sequential 249 279 286—88
Least squares, weighted 150 225—26 244—48 270
Levinson recursion 198 403
Likelihood function, definition 29
Likelihood function, modified 175 185
Line arrays 58 145
Line fitting 41 83—84 237—40 373
Linear minimum mean square error estimator, definition 380—82 389
Linear minimum mean square error estimator, properties 390
Linear minimum mean square error estimator, sequential 393 398 415—18
Linear minimum mean square error estimator, vector space interpretation 386
Linear model (Bayesian), definition 325
Linear model (Bayesian), Kalman filter modeling 447
Linear model (Bayesian), MMSE estimator 364—65 533—34
Linear model (Bayesian), properties 487—89
Linear model (classical), CRLB 85
Linear model (classical), definition 84 94—95 97 529—30
Linear model (classical), efficiency 85—86
Linear model (classical), estimator and properties 85 486—88
Linear model (classical), line fitting 45
Linear model (classical), MLE 186
Linear model (classical), reduced 99 254
Linear model (classical), sufficient statistics 126
Linear Predictive Coding 5 59 198 407
Linear random process 77
LMMSE (see Linear minimum mean square error estimator)
Localization, source 142—46 456—66
LPC (see Linear predictive coding)
LS, LSE (see Least squares)
Lyapunov equation 430
MA (see Moving average)
MAP (see Maximum a posteriori estimator)
Matrix, autocorrelation 62 93
Matrix, determinant 567
Matrix, diagonal 568—69
Matrix, eigenanalysis 573
Matrix, hermitian 501
Matrix, idempotent 194 570
Matrix, ill-conditioned 85 98 240—41
Matrix, inversion, definition 567
Matrix, inversion, lemma 571
Matrix, inversion, orthogonal 569
Matrix, inversion, partitioned 571—72
Matrix, inversion, positive definite (semidefinite) 568 572
Matrix, inversion, projection 231 242 277 285
Matrix, inversion, square 567
Matrix, inversion, symmetric 567
Matrix, inversion, Toeplitz 62 93 570
Matrix, inversion, trace 568
Matrix, inversion, transpose 567
Matrix, inversion, Woodbury's identity 571
Maximum a posteriori estimator, definition 344 351 354 372
Maximum a posteriori estimator, properties 358 372
Maximum likelihood estimator, asymptotic 190
Maximum likelihood estimator, Bayesian 352
Ðåêëàìà