Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Kay S.M. — Fundamentals of statistical signal processing, volume 1: estimation theory
Kay S.M. — Fundamentals of statistical signal processing, volume 1: estimation theory



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Fundamentals of statistical signal processing, volume 1: estimation theory

Àâòîð: Kay S.M.

Àííîòàöèÿ:

This text is geared towards a one-semester graduate-level course in statistical signal processing and estimation theory. The author balances technical detail with practical and implementation issues, delivering an exposition that is both theoretically rigorous and application-oriented. The book covers topics such as minimum variance unbiased estimators, the Cramer-Rao bound, best linear unbiased estimators, maximum likelihood estimation, recursive least squares, Bayesian estimation techniques, and the Wiener and Kalman filters. The author provides numerous examples, which illustrate both theory and applications for problems such as high-resolution spectral analysis, system identification, digital filter design, adaptive beamforming and noise cancellation, and tracking and localization. The primary audience will be those involved in the design and implementation of optimal estimation algorithms on digital computers. The text assumes that you have a background in probability and random processes and linear and matrix algebra and exposure to basic signal processing. Students as well as researchers and practicing engineers will find the text an invaluable introduction and resource for scalar and vector parameter estimation theory and a convenient reference for the design of successive parameter estimation algorithms.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/Âåðîÿòíîñòü/Ñòàòèñòèêà è ïðèëîæåíèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1993

Êîëè÷åñòâî ñòðàíèö: 595

Äîáàâëåíà â êàòàëîã: 04.06.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
ACF      (see Autocorrelation)
Adaptive beamforming      544—48
Adaptive filters      (see Least squares sequential)
Adaptive filters, Analytic signal      497 551
Adaptive filters, Kalman      439
Adaptive filters, noise canceler      268—73
ar      (see Autoregressive)
ARMA      (see Autoregressive moving average)
Asymptotic, Cramer — Rao lower bound      51 77—81
Asymptotic, efficiency      38—39 160 164
Asymptotic, Gaussian PDF, complex      535
Asymptotic, Gaussian PDF, real      80
Asymptotic, mean and variance      295 301—2 305-6
Asymptotic, MLE      190
Asymptotic, probability density function of MLE      164
Asymptotic, unbiasedness      38 160
Autocorrelation method of linear prediction      198
Autocorrelation, definition      575
Autocorrelation, estimator      197 204 267
Autoregressive      (see also Linear predictive coding)
Autoregressive moving average, definition      266
Autoregressive moving average, dynamic model      468
Autoregressive moving average, estimation      266—68
Autoregressive, definition      59—60 578
Autoregressive, MLE      196—98
Autoregressive, ORLB      59—62
Autoregressive, power spectral density, complex process      497—98
Autoregressive, prediction      414
Bayesian      484—85
Beamforming, conventional      547
Bearing estimation      3 57—59 195—96
Bernoulli trial      123 200
Best linear unbiased estimator, complex data      523—24
Best linear unbiased estimator, covariance errors      150
Best linear unbiased estimator, definition      134 137 139—40
Best linear unbiased estimator, derivation      151—55
Best linear unbiased estimator, linear model      141
Best linear unbiased estimator, transformations      135 147 149—50
Bias error      18
Biomedical signal processing      23
blue      (see Best linear unbiased estimator)
CCF      (see Cross-correlation)
Chirp rate estimator      553
Communications, channel equalization      365
Communications, coherent demodulation      273
Communications, on-off keying      148
Complete sufficient statistic      109—12 119
Complex envelope      494
Conditional mean estimator      (see Minimum mean square error estimator Bayesian)
Consistency, estimator      24 161 200
Correlation coefficient, conditional Gaussian PDF      323
Correlation coefficient, CRLB      66
Correlation coefficient, definition      64
Correlation coefficient, least squares      241
Correlation coefficient, MLE      200 304
Correlation time      50 77—78 535
Correlator, signal      192
Cost function      342
Covariance matrix, complex, definition      501
Covariance matrix, complex, properties      505—6 555—57
Cramer-Rao lower bound, asymptotic      51 77—81
Cramer-Rao lower bound, complex Gaussian      525
Cramer-Rao lower bound, definition      22 30 39—40 44
Cramer-Rao lower bound, Gaussian PDF      47—48
Cramer-Rao lower bound, signals in WGN      36 48
Cramer-Rao lower bound, transformed parameters      37 45
CRLB      (see Cramer-Rao lower bound)
Cross-correlation      514 575
Cross-power spectral density      576—77
Curve fitting, CRLB      65
Curve fitting, least squares      232—35
Curve fitting, linear model      86—88
CWGN      (see White Gaussian noise complex)
Cyclical data      (see Sinusoidal estimation)
DC level in noise      (see Examples)
DC level in noise, Deconvolution      365—70
DC level in noise, definition      31
Derivative, complex      499—500 517 519—21
Detection, jump in level      278
Detection, sinusoidal      98—99 148—49 554
DFT      (see Discrete Fourier transform)
Digital filter design, equation error      261—65
Digital filter design, least squares      280—81
Discrete Fourier transform, normalization of      511
Discrete Fourier transform, orthogonality      89 569—70
Discrete Fourier transform, PDF for WGN      509—11 537
Dispersive channel      452
Efficiency, estimator      34 38—39 84—86 160 167 187 528
Eigenanalysis of covariance matrix      147—48 537
Eigenvalue/eigenvector      573
em      (see Expectation-maximization)
entropy      336
Equation error modeling      266
Error ellipse      364
Estimators, classical vs. Bayesian      8 309 312
Estimators, combining      17
Estimators, definition      9
Estimators, performance      9—12 24 295 mean
Estimators, selection, rationale for      489—90
Estimators, summary, classical      480—83
Examples, adaptive beamformer      544—48 5
Examples, adaptive noise canceler      268—73
Examples, autoregressive parameters in ARMA, LSE      266—68
Examples, autoregressive parameters, CRLB      59—62
Examples, autoregressive parameters, MLE      196—98
Examples, bandpass Gaussian noise      515—17
Examples, bearing, CRLB      57—59
Examples, bearing, MLE      195—96
Examples, channel estimation      452—56
Examples, covariance matrix scale factor, Bayesian estimation      329—30
Examples, curve fitting, MVU estimator      86—88
Examples, DC level and exponential in WGN, MVU estimator      96—97
Examples, DC level in colored noise, complex BLUE      523—24
Examples, DC level in colored noise, MVU estimator      95—96
Examples, DC level in noise, LSE      221
Examples, DC level in non — Gaussian noise      172—73
Examples, DC level in uncorrelated noise, BLUE      138—39
Examples, DC level in WGN, amplitude and variance sufficient statistics      118
Examples, DC level in WGN, amplitude and variance, MAP estimator      355—58
Examples, DC level in WGN, amplitude/variance, MLE      158—163
Examples, DC level in WGN, biased estimator      17
Examples, DC level in WGN, CRLB for amplitude      31—32
Examples, DC level in WGN, CRLB for amplitude and variance      40—41
Examples, DC level in WGN, CRLB for random amplitude variance      49—50
Examples, DC level in WGN, Gaussian prior, MMSE estimator      317—21 326—28 360-61
Examples, DC level in WGN, method of moments      291—92
Examples, DC level in WGN, MLE for amplitude and variance      183
Examples, DC level in WGN, MLE Monte Carlo performance      164—66
Examples, DC level in WGN, MVU amplitude and variance estimator from sufficient statistic      119—22
Examples, DC level in WGN, MVU amplitude estimator from sufficient statistic      107—109
Examples, DC level in WGN, sequential LMMSE estimator      392—93
Examples, DC level in WGN, sequential LSE      243—48
Examples, DC level in WGN, sufficient statistic      105
Examples, DC level in WGN, transformed parameter MLE      173—77
Examples, DC level in WGN, unbiased estimator      16
Examples, DC level in WGN, uniform prior, LMMSE estimator      383
Examples, DC level in WGN, uniform prior, MAP estimator      352—53
Examples, DC level in WGN. MLE for amplitude      163—64
Examples, DC level in WGN. uniform prior, MMSE estimator      315
Examples, DC level in white noise, BLUE      137—38
Examples, digital filter design, LSE      261—65
Examples, discrete Fourier transform, PDF of CWGN      535—37
Examples, discrete Fourier transform, PDF of WGN      509—11
Examples, estimator      298—99
Examples, exponential PDF parameter transformation, MAP estimator      358—59
Examples, exponential PDF parameter, MAP estimator      351—52
Examples, exponential PDF parameter, method of moments      292 295—97
Examples, exponential signal in WGN, MLE      178—82
Examples, exponential signal, LSE      257—58
Examples, Fourier analysis, Bayesian      347—49 362—64 399—400
Examples, Fourier analysis, LSE      226—27 230—31
Examples, Fourier analysis, MVU estimator      88—90
Examples, Fourier analysis, sequential LSE      250—51
Examples, frequencies of sinusoids, EM estimator      187—89
Examples, frequency of sinusoid, CRLB.      36
Examples, frequency of sinusoid, method of moments      299—304
Examples, frequency of WSS process, center, CRLB      51—53
Examples, Gauss — Markov model      427—28
Examples, Gaussian mixture parameters      290—91 293—94
Examples, Hermitian form, mean and variance      512—13
Examples, Hermitian function, minimization      521—23
Examples, identification of FIR system, MVU estimator      90—94
Examples, Kalman filter      436—38 443—45
Examples, line fitting, CRLB      41—43
Examples, line fitting, order-recursive LSE      237—40
Examples, linear model, classical complex      529—30
Examples, localization, source, BLUE      142—46
Examples, mean of uniform noise, MVU estimator      113—16
Examples, moving average, MLE      190—91
Examples, MVU estimator, possible nonexistence of      20—21
Examples, orthogonal random variables. LMMSE estimator      388—89
Examples, PDF parameter dependence      28—31
Examples, periodogram spectral estimation      538—39
Examples, phase of complex sinusoid, MLE      531—32
Examples, phase of sinusoid, CRLB      33—34
Examples, phase of sinusoid, MLE      167—72
Examples, phase of sinusoid, sufficient statistic      106—7
Examples, phase-locked loop      273—75
Examples, power of noise, CRLB      49
Examples, power of noise, sufficient statistic      105
Examples, range, CRLB      53—56
Examples, range, MLE      192
Examples, signal amplitude estimation, complex LSE      498—500
Examples, signal in non — Gaussian noise, MLE      184—85
Examples, signal in WGN, CRLB      48
Examples, signal, constrained LSE      252—54
Examples, signal-to-noise ratio. CRLB      46
Examples, sinusoidal amplitude, LSE      255—56
Examples, sinusoidal complex amplitude, MMSE estimator      534—35
Examples, sinusoidal modeling, complex      496—97
Examples, sinusoidal parameters, complex MLE      539—44
Examples, sinusoidal parameters, CRLB      56—57
Examples, sinusoidal parameters, LSE      222—23
Examples, sinusoidal parameters, MLE      193—95
Examples, sinusoidal parameters, sufficient statistics      117—18
Examples, sinusoidal power, complex MVU estimator      525—27
Examples, sufficient statistic verification      103—4
Examples, sufficient statistic, completeness of      110—11
Examples, sufficient statistic, incompleteness of      111—12
Examples, vehicle tracking      456—66
Examples, Wiener filtering      365—70 400—409 443-45
Expectation-Maximization      182 187—89
Exponential PDF family, definition      (see Probability density functions)
Exponential PDF family, MLE      200
Exponential signals, estimation      257 58 298—99
Fading signal      100 452
Finite impulse response filter      90—94
FIR      (see Finite impulse response filter)
Fisher information, decoupled matrix      41 65
Fisher information, definition      34 40
Fisher information, properties      35 65
Fourier analysis      88—90 226—27 250-51 347—49 362—64 399-400
Frequency estimation      (see Sinusoidal estimation and Examples)
Gauss — Markov theorem      141 143 552
Gauss — Newton iteration      260
Gauss-Markov process, definition      421 426 430—31
Gauss-Markov process, properties      424 429
Gaussian random process      467 513 577—78
Gradient formulas      73—74 84 519—21
Gram — Schmidt orthogonalization      236 396 411
Grid search      177
Hermitian form, definition      502
Hermitian form, minimization      521—23
Hermitian form, moments      502—3 513
histogram      10 165 206—7 209
Image signal processing      365
In-phase signal      495—96
Innovations      396 433 441
interference suppression      270
Interpolation      412
Kalman filter, definition      436 446—49 455
Kalman filter, derivation      471—75
Kalman filter, extended      451—52 462 476—77
Kalman filter, gain      436 447
Kalman filter, information form      449
Kalman filter, steady state      443
Least squares, BLUE, relationship with      225
Least squares, constrained      252
Least squares, definition      220—21
Least squares, estimator      225
Least squares, modified Yule — Walker equations      268
Least squares, nonlinear      222 254
Least squares, numerical determination      259—60
Least squares, order-recursive      237 282—84
Least squares, separable      222—23 256—57
Least squares, sequential      249 279 286—88
Least squares, weighted      150 225—26 244—48 270
Levinson recursion      198 403
Likelihood function, definition      29
Likelihood function, modified      175 185
Line arrays      58 145
Line fitting      41 83—84 237—40 373
Linear minimum mean square error estimator, definition      380—82 389
Linear minimum mean square error estimator, properties      390
Linear minimum mean square error estimator, sequential      393 398 415—18
Linear minimum mean square error estimator, vector space interpretation      386
Linear model (Bayesian), definition      325
Linear model (Bayesian), Kalman filter modeling      447
Linear model (Bayesian), MMSE estimator      364—65 533—34
Linear model (Bayesian), properties      487—89
Linear model (classical), CRLB      85
Linear model (classical), definition      84 94—95 97 529—30
Linear model (classical), efficiency      85—86
Linear model (classical), estimator and properties      85 486—88
Linear model (classical), line fitting      45
Linear model (classical), MLE      186
Linear model (classical), reduced      99 254
Linear model (classical), sufficient statistics      126
Linear Predictive Coding      5 59 198 407
Linear random process      77
LMMSE      (see Linear minimum mean square error estimator)
Localization, source      142—46 456—66
LPC      (see Linear predictive coding)
LS, LSE      (see Least squares)
Lyapunov equation      430
MA      (see Moving average)
MAP      (see Maximum a posteriori estimator)
Matrix, autocorrelation      62 93
Matrix, determinant      567
Matrix, diagonal      568—69
Matrix, eigenanalysis      573
Matrix, hermitian      501
Matrix, idempotent      194 570
Matrix, ill-conditioned      85 98 240—41
Matrix, inversion, definition      567
Matrix, inversion, lemma      571
Matrix, inversion, orthogonal      569
Matrix, inversion, partitioned      571—72
Matrix, inversion, positive definite (semidefinite)      568 572
Matrix, inversion, projection      231 242 277 285
Matrix, inversion, square      567
Matrix, inversion, symmetric      567
Matrix, inversion, Toeplitz      62 93 570
Matrix, inversion, trace      568
Matrix, inversion, transpose      567
Matrix, inversion, Woodbury's identity      571
Maximum a posteriori estimator, definition      344 351 354 372
Maximum a posteriori estimator, properties      358 372
Maximum likelihood estimator, asymptotic      190
Maximum likelihood estimator, Bayesian      352
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå