Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Kay S.M. — Fundamentals of statistical signal processing, volume 1: estimation theory
Kay S.M. — Fundamentals of statistical signal processing, volume 1: estimation theory



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Fundamentals of statistical signal processing, volume 1: estimation theory

Автор: Kay S.M.

Аннотация:

This text is geared towards a one-semester graduate-level course in statistical signal processing and estimation theory. The author balances technical detail with practical and implementation issues, delivering an exposition that is both theoretically rigorous and application-oriented. The book covers topics such as minimum variance unbiased estimators, the Cramer-Rao bound, best linear unbiased estimators, maximum likelihood estimation, recursive least squares, Bayesian estimation techniques, and the Wiener and Kalman filters. The author provides numerous examples, which illustrate both theory and applications for problems such as high-resolution spectral analysis, system identification, digital filter design, adaptive beamforming and noise cancellation, and tracking and localization. The primary audience will be those involved in the design and implementation of optimal estimation algorithms on digital computers. The text assumes that you have a background in probability and random processes and linear and matrix algebra and exposure to basic signal processing. Students as well as researchers and practicing engineers will find the text an invaluable introduction and resource for scalar and vector parameter estimation theory and a convenient reference for the design of successive parameter estimation algorithms.


Язык: en

Рубрика: Математика/Вероятность/Статистика и приложения/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1993

Количество страниц: 595

Добавлена в каталог: 04.06.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Maximum likelihood estimator, complex data      530—31 563—65
Maximum likelihood estimator, definition      162 182
Maximum likelihood estimator, efficiency      164 187
Maximum likelihood estimator, Gaussian PDF      185
Maximum likelihood estimator, invariance      174—76 185
Maximum likelihood estimator, numerical determination      177—82 187—89
Maximum likelihood estimator, probability density function, asymptotic      167 183 211—13
Maximum likelihood estimator, properties, asymptotic      172 201—2
Mean square bandwidth      55
Mean square error matrix      361—62 390
Mean square error, Bayesian      311 320 347 533
Mean square error, classical      19
Minimal sufficient statistic      102 117
Minimum mean square error estimator, Bayesian, classical      19 311
Minimum mean square error estimator, Bayesian, definition      313 316 346
Minimum mean square error estimator, Bayesian, performance      360 364—65 534
Minimum mean square error estimator, Bayesian, properties      349—50
Minimum variance distortionless response      546
Minimum variance unbiased estimator, definition      20
Minimum variance unbiased estimator, determination of      109 112—13
Minimum variance unbiased estimator, linear model      85—86
MLE      (see Maximum likelihood estimator)
MMSE      (see Minimum mean square error estimator)
Modeling      (see also Autoregressive and Linear predictive coding)
Modeling, dynamical signal      421
Modeling, identifiability      85
Modeling, least squares      232—34
Modeling, linearization      143 259 273 451 461
Modeling, speech spectrum      5
Moments, method of definition      293
Moments, method of exponential parameter, estimator      292 295—97
Moments, method of Gaussian mixture      290—91 293—94
Monte Carlo method      10 164—167 205—10
Moving average, asymptotic MLE      190—91
Moving average, definition      580
MSE      (see Mean square error)
MVU      (see Minimum variance unbiased estimator)
Narrowband representation      495
Newton — Raphson iteration      179—82 187 259
Neyman — Fisher factorization      104—5 117 127—29
Normal equations      225 387
Notational conventions      13 (see also Appendix 2)
Nuisance parameters      329
Observation equation      446
Observation matrix      84 100 140 224
Order statistics      114
Orthogonality      89 385 orthogonal)
Outliers      170
PDF      (see Probability density functions)
Periodogram      80 190 195 197 204
Phase-locked loop      273—75
Posterior PDF, Bayesian linear model      326 533
Posterior PDF, definition      313 317
Power estimation, random process      66 203 553—54
Power spectral density      576—77
Prediction, Kalman      440—41 469—70
Prediction, Wiener      400
Prior PDF, conjugate      335 (see also Reproducing PDF)
Prior PDF, definition      313
Prior PDF, noninformative      332 336
Probability density functions, chi-squared      122 575
Probability density functions, complex Gaussian, conditional      508—9 562
Probability density functions, complex Gaussian, definition      503—4 507
Probability density functions, complex Gaussian, exponential      122
Probability density functions, complex Gaussian, exponential family      110 124
Probability density functions, complex Gaussian, gamma, inverted      329—30 355
Probability density functions, complex Gaussian, properties      508—9 550 558—62
Probability density functions, Gaussian      574
Probability density functions, Gaussian mixture      150
Probability density functions, Gaussian, conditional      323—25 337—39
Probability density functions, Laplacian      63
Probability density functions, lognormal      147
Probability density functions, Rayleigh      122 371
Processing gain      554
Projection theorem, orthogonal      228—29 386
Pronv method      264
PSD      (see Power spectral density)
Pseudorandom noise      92 165 206
Pythagorean theorem, least squares      276
Quadratic form, definition      568
Quadratic form, moments      76
Quadrature signal      495—96
Radar signal processing      1
Random number generator      (see Pseudorandom noise)
Random variable, complex      500—501
Range estimation      1 14 53—56 192
Rao-Blackwell-Lehmann-Scheffe theorem      22 109 118—19 130—31
Rayleigh fading      347
RBLs      (see Rao-Blackwell-Lehmann-Scheffe theorem)
Regression, nonlinear      254
Regularity conditions      30 44 63 67 70
Reproducing PDF      321 334—35
Ricatti equation      443
Risk, Bayes      342
Sample mean estimator      115 121 164
Sample variance estimator      121 164
Scoring      180 187
Seismic signal processing      365
Separability, least squares      222—23 256
Signal amplitude estimator      136 498—500
Sinusoidal estimation, amplitudes      88—90
Sinusoidal estimation, complex data      525—27 531—32 534—35 543
Sinusoidal estimation, CRLB for frequency      36
Sinusoidal estimation, CRLB for parameters      56—57 542
Sinusoidal estimation, CRLB for phase      33
Sinusoidal estimation, EM for frequency      187—89
Sinusoidal estimation, least squares for parameters      255—56
Sinusoidal estimation, method of moments for frequency      300 306
Sinusoidal estimation, MLE for parameters      193—95 203-4
Sinusoidal estimation, phase estimator      123 167—72
Sinusoidal estimation, sufficient statistics      117—18
Sinusoidal modeling, complex      496
Slutsky’s theorem      201
Smoothing, Wiener      400
Sonar signal processing      2
Spatial frequency      58 195
Spectral estimation, autoregressive      60
Spectral estimation, Fourier analysis      88—90
Spectral estimation, periodogram      204 538—39 543 552
Speech recognition      4
State transition matrix      426
State vector      424
Statistical linearization      39 200
Sufficient statistic      22 102—3 107 116
System identification, nonrandom FIR      90—94 99
System identification, random FIR      452—55
Tapped delay line      (see FIR)
Threshold effect      170
Time delay estimation      53—56 142—46
Time difference of arrival      142
Time series      6
Tracking, frequency      470 (see also Phase-locked loop)
Tracking, vehicle position      456—66
Unbiased estimator      16 22
Vector spaces, least squares      227—30
Vector spaces, random variables      384
Wavenumber      (see Spatial frequency)
WGN      (see White Gaussian noise)
White Gaussian noise, complex      517
White Gaussian noise, real      7
White noise      576
Whitening, Kalman      441 444
Whitening, matrix transformation      94—96
Wide sense stationary      575
Wiener filtering      365—70 373—74 379 400-409 443
Wiener-Hopf equations, filtering      403
Wiener-Hopf equations, prediction      406—7
WSS      (see Wide sense stationary)
Yule-Walker equations, AR      198 579
Yule-Walker equations, ARMA      267
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте