Авторизация
Поиск по указателям
Kay S.M. — Fundamentals of statistical signal processing, volume 1: estimation theory
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Fundamentals of statistical signal processing, volume 1: estimation theory
Автор: Kay S.M.
Аннотация: This text is geared towards a one-semester graduate-level course in statistical signal processing and estimation theory. The author balances technical detail with practical and implementation issues, delivering an exposition that is both theoretically rigorous and application-oriented. The book covers topics such as minimum variance unbiased estimators, the Cramer-Rao bound, best linear unbiased estimators, maximum likelihood estimation, recursive least squares, Bayesian estimation techniques, and the Wiener and Kalman filters. The author provides numerous examples, which illustrate both theory and applications for problems such as high-resolution spectral analysis, system identification, digital filter design, adaptive beamforming and noise cancellation, and tracking and localization. The primary audience will be those involved in the design and implementation of optimal estimation algorithms on digital computers. The text assumes that you have a background in probability and random processes and linear and matrix algebra and exposure to basic signal processing. Students as well as researchers and practicing engineers will find the text an invaluable introduction and resource for scalar and vector parameter estimation theory and a convenient reference for the design of successive parameter estimation algorithms.
Язык:
Рубрика: Математика /Вероятность /Статистика и приложения /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1993
Количество страниц: 595
Добавлена в каталог: 04.06.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Maximum likelihood estimator, complex data 530—31 563—65
Maximum likelihood estimator, definition 162 182
Maximum likelihood estimator, efficiency 164 187
Maximum likelihood estimator, Gaussian PDF 185
Maximum likelihood estimator, invariance 174—76 185
Maximum likelihood estimator, numerical determination 177—82 187—89
Maximum likelihood estimator, probability density function, asymptotic 167 183 211—13
Maximum likelihood estimator, properties, asymptotic 172 201—2
Mean square bandwidth 55
Mean square error matrix 361—62 390
Mean square error, Bayesian 311 320 347 533
Mean square error, classical 19
Minimal sufficient statistic 102 117
Minimum mean square error estimator, Bayesian, classical 19 311
Minimum mean square error estimator, Bayesian, definition 313 316 346
Minimum mean square error estimator, Bayesian, performance 360 364—65 534
Minimum mean square error estimator, Bayesian, properties 349—50
Minimum variance distortionless response 546
Minimum variance unbiased estimator, definition 20
Minimum variance unbiased estimator, determination of 109 112—13
Minimum variance unbiased estimator, linear model 85—86
MLE (see Maximum likelihood estimator)
MMSE (see Minimum mean square error estimator)
Modeling (see also Autoregressive and Linear predictive coding)
Modeling, dynamical signal 421
Modeling, identifiability 85
Modeling, least squares 232—34
Modeling, linearization 143 259 273 451 461
Modeling, speech spectrum 5
Moments, method of definition 293
Moments, method of exponential parameter, estimator 292 295—97
Moments, method of Gaussian mixture 290—91 293—94
Monte Carlo method 10 164—167 205—10
Moving average, asymptotic MLE 190—91
Moving average, definition 580
MSE (see Mean square error)
MVU (see Minimum variance unbiased estimator)
Narrowband representation 495
Newton — Raphson iteration 179—82 187 259
Neyman — Fisher factorization 104—5 117 127—29
Normal equations 225 387
Notational conventions 13 (see also Appendix 2)
Nuisance parameters 329
Observation equation 446
Observation matrix 84 100 140 224
Order statistics 114
Orthogonality 89 385 orthogonal)
Outliers 170
PDF (see Probability density functions)
Periodogram 80 190 195 197 204
Phase-locked loop 273—75
Posterior PDF, Bayesian linear model 326 533
Posterior PDF, definition 313 317
Power estimation, random process 66 203 553—54
Power spectral density 576—77
Prediction, Kalman 440—41 469—70
Prediction, Wiener 400
Prior PDF, conjugate 335 (see also Reproducing PDF)
Prior PDF, definition 313
Prior PDF, noninformative 332 336
Probability density functions, chi-squared 122 575
Probability density functions, complex Gaussian, conditional 508—9 562
Probability density functions, complex Gaussian, definition 503—4 507
Probability density functions, complex Gaussian, exponential 122
Probability density functions, complex Gaussian, exponential family 110 124
Probability density functions, complex Gaussian, gamma, inverted 329—30 355
Probability density functions, complex Gaussian, properties 508—9 550 558—62
Probability density functions, Gaussian 574
Probability density functions, Gaussian mixture 150
Probability density functions, Gaussian, conditional 323—25 337—39
Probability density functions, Laplacian 63
Probability density functions, lognormal 147
Probability density functions, Rayleigh 122 371
Processing gain 554
Projection theorem, orthogonal 228—29 386
Pronv method 264
PSD (see Power spectral density)
Pseudorandom noise 92 165 206
Pythagorean theorem, least squares 276
Quadratic form, definition 568
Quadratic form, moments 76
Quadrature signal 495—96
Radar signal processing 1
Random number generator (see Pseudorandom noise)
Random variable, complex 500—501
Range estimation 1 14 53—56 192
Rao-Blackwell-Lehmann-Scheffe theorem 22 109 118—19 130—31
Rayleigh fading 347
RBLs (see Rao-Blackwell-Lehmann-Scheffe theorem)
Regression, nonlinear 254
Regularity conditions 30 44 63 67 70
Reproducing PDF 321 334—35
Ricatti equation 443
Risk, Bayes 342
Sample mean estimator 115 121 164
Sample variance estimator 121 164
Scoring 180 187
Seismic signal processing 365
Separability, least squares 222—23 256
Signal amplitude estimator 136 498—500
Sinusoidal estimation, amplitudes 88—90
Sinusoidal estimation, complex data 525—27 531—32 534—35 543
Sinusoidal estimation, CRLB for frequency 36
Sinusoidal estimation, CRLB for parameters 56—57 542
Sinusoidal estimation, CRLB for phase 33
Sinusoidal estimation, EM for frequency 187—89
Sinusoidal estimation, least squares for parameters 255—56
Sinusoidal estimation, method of moments for frequency 300 306
Sinusoidal estimation, MLE for parameters 193—95 203-4
Sinusoidal estimation, phase estimator 123 167—72
Sinusoidal estimation, sufficient statistics 117—18
Sinusoidal modeling, complex 496
Slutsky’s theorem 201
Smoothing, Wiener 400
Sonar signal processing 2
Spatial frequency 58 195
Spectral estimation, autoregressive 60
Spectral estimation, Fourier analysis 88—90
Spectral estimation, periodogram 204 538—39 543 552
Speech recognition 4
State transition matrix 426
State vector 424
Statistical linearization 39 200
Sufficient statistic 22 102—3 107 116
System identification, nonrandom FIR 90—94 99
System identification, random FIR 452—55
Tapped delay line (see FIR)
Threshold effect 170
Time delay estimation 53—56 142—46
Time difference of arrival 142
Time series 6
Tracking, frequency 470 (see also Phase-locked loop)
Tracking, vehicle position 456—66
Unbiased estimator 16 22
Vector spaces, least squares 227—30
Vector spaces, random variables 384
Wavenumber (see Spatial frequency)
WGN (see White Gaussian noise)
White Gaussian noise, complex 517
White Gaussian noise, real 7
White noise 576
Whitening, Kalman 441 444
Whitening, matrix transformation 94—96
Wide sense stationary 575
Wiener filtering 365—70 373—74 379 400-409 443
Wiener-Hopf equations, filtering 403
Wiener-Hopf equations, prediction 406—7
WSS (see Wide sense stationary)
Yule-Walker equations, AR 198 579
Yule-Walker equations, ARMA 267
Реклама