Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Ghosh Sujit K., Mallick Bani K., Dey Dipak K. — Generalized Linear Models: A Bayesian Perspective
Ghosh Sujit K., Mallick Bani K., Dey Dipak K. — Generalized Linear Models: A Bayesian Perspective



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Generalized Linear Models: A Bayesian Perspective

Àâòîðû: Ghosh Sujit K., Mallick Bani K., Dey Dipak K.

Àííîòàöèÿ:

Describes how to conceptualize, perform, and critique traditional generalized linear models (GLMs) from a Bayesian perspective and how to use modern computational methods to summarize inferences using simulation, covering random effects in generalized linear mixed models (GLMMs) with explained examples. Considers parametric and semiparametric approaches to overdispersed GLMs, applies Bayesian GLMs to US mortality data, and presents methods of analyzing correlated binary data using latent variables. Describes and analyzes item response modeling for categorical data, and provides variable selection methods using the Gibbs sampler for Cox models. Dey is professor and head of the department of statistics at the University of Connecticut-Storrs


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/Âåðîÿòíîñòü/Ñòàòèñòèêà è ïðèëîæåíèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2000

Êîëè÷åñòâî ñòðàíèö: 442

Äîáàâëåíà â êàòàëîã: 28.05.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Model expansion      14
Model intra-cluster correlation, correlated binary data      113
Model misspecification      8
Model probability computations, time series count data, Bayesian methods      165—167
Model space prior distribution, Cox variable selection      297—299
Model uncertainty      274
Model-based categorization, AMI guideline compliance      208f
Modeled heterogeneity, parametrized weighted distribution, OGLMs      78
Modeling, point-referenced binary spatial data      373—385
MonitoredValue method, graphical model      403
Monotone functions      10
Monte Carlo EM algorithm (MCEM), analysis of survival data      256—259
Monte Carlo error      401
Monte Carlo method, noniterative, point-referenced binary spatial data      378
Monte Carlo method, posterior model probabilities      48—50
Monte Carlo method, time series count data      167
Monte Carlo posterior estimates, Chen and Shao      301
Monte Carlo posterior estimates, Gibbs sampling method      232—235
Mortality data, U.S., models      100—102
Motivating example, Bayesian MARS (BMARS) GLMs      224—225
Multistage generalized linear models (GLMs), overdispersion      84—85
Multivariate adaptive regression, spline (MARS) methodology      221
Multivariate Cauchy (MVC), correlated ordinal data models, item response data example      148—155
Multivariate Cauchy (MVC), multivariate t-link (MVT)      136—137
Multivariate DGLM      61
Multivariate discrete mass function, correlated binary data      115
Multivariate exponential power, Bayesian modeling      137
Multivariate exponential power, distribution family links (MVEP)      136
Multivariate exponential power, scale mixture of multivariate, normal (SMMVN) link functions      137
Multivariate logit (MVL)      136 137
Multivariate logit (MVL), correlated ordinal data models, item response data example      148—155
Multivariate nature      104
Multivariate normal distribution      27
Multivariate probit (MVP)      136 313
Multivariate probit (MVP), correlated binary data      117
Multivariate probit (MVP), correlated ordinal data models      133 141
Multivariate probit (MVP), correlated ordinal data models, item response data example      148—155
Multivariate probit (MVP), covariate effects      118t
Multivariate probit (MVP), models, correlated binary data diagnostics      315
Multivariate probit (MVP), MVT      118—119
Multivariate probit (MVP), posterior boxplots      119f
Multivariate probit (MVP), posterior computations, correlated binary data diagnostics      318—320
Multivariate probit (MVP), prior-posterior summary      126t
Multivariate probit (MVP), Toeplitz correlation structure      126t
Multivariate probit model, correlated binary data      114—119
Multivariate regression      58
Multivariate stable distribution, families (MVS)      136 137
Multivariate stable distribution, families (MVS), correlated ordinal data models      141—142 142
Multivariate t-link (MVT)      136
Multivariate t-link (MVT), correlated binary data diagnostics      315—316
Multivariate t-link (MVT), correlated binary data diagnostics, posterior computations      320
Multivariate t-link (MVT), correlated ordinal data models      141
Multivariate t-link (MVT), fitting      118—119
Multivariate t-link (MVT), models      313
Multivariate t-link (MVT), multivariate Cauchy (MVC)      136—137
National Center for Health Statistics (NCHS), HSAs      100
Nelder — Mead algorithm, correlated ordinal data models      140
Non-canonical links, GLM      391
Non-Gaussian state-space models, DGLMs      61
Non-Wishart prior assumptions      117
Noninformative priors, item response modeling      178—179
Noniterative Monte Carlo method, point-referenced binary spatial data      378
Nonlinear state-space models, DGLMs      61
Nonparametric approach, binary regression      219
Nonparametric Bayesian framework, OGLMs      81—84
Normal distribution      390
Normal distribution, binary regression model, data adaptive Bayesian analysis      245
Normal model      250t
Normal residual effects      25
Normal scale mixture links, binary response regression      231—240
Normalizing constants, posterior distributions      300
Nuisance parameters      47—48
Nutritional epidemiology, errors-in variables      332—333
Observation equation      58 59 60
Observed nodes      390
One-parameter exponential family model      8 12 31
One-parameter exponential family model, limitations      13—14
One-parameter exponential family model, OGLMs      76
One-parameter model, Bayesian fitting, item response modeling      185
Optimize method, graphical model      403
Ord model      27
Ordered categories, WinBUGS      395—396
Outlier detection      14
Outliers, binary regression, data adaptive robust link functions      248
Overdispersed generalized linear, models (OGLMs)      12—14 73—85 391—392
Overdispersed generalized linear, models (OGLMs), classes      75—78
Overdispersed generalized linear, models (OGLMs), example      83
Overdispersed generalized linear, models (OGLMs), fitting      81—82
Overdispersed generalized linear, models (OGLMs), hierarchical or multistage      84—85
Overdispersed generalized linear, models (OGLMs), model determination      83—84
Overdispersed generalized linear, models (OGLMs), nonparametric Bayesian framework      81—84
Overdispersed generalized linear, parametric Bayesian framework, example      79—80
Overdispersed generalized linear, parametric Bayesian framework, fitting      78—81
Overdispersed generalized linear, parametric Bayesian framework, model determination      80—81
Overdispersed generalized linear, parametrized weighted, distribution      78
Overshrinkage      103
Parameter exponential family defining      12
Parameter exponential family, one vs. two      12—14
Parametric approach      10
Parametric Bayesian framework, fitting OGLMs      78—81
Parametric Bayesian GLMs      10
Parametric family of densities      11
Parametric OGLMs, model determination      80—81
Parametrized weighted distribution, modeled heterogeneity OGLMs      78
Parents method, graphical model      403
Pediatric pain data      51—52
Penalized quasi-likelihood estimates (PQL)      6
Piecewise linear approximation, DGLMs      61
Piecewise linear approximation, small area inference      92
Pima Indian dataset, website      225
Pima Indian example, Bayesian MARS (BMARS) generalized linear models      225—228
Plates      388
Point estimator, HSAs      102
Point-biserial correlation, observed proportions correct      174f
Point-referenced binary spatial data, computational issues      378—380
Point-referenced binary spatial data, Gaussian us. Markov models      374
Point-referenced binary spatial data, illustration      380—384 380f—381f 382t 383f—384f
Point-referenced binary spatial data, indicator kriging      374
Point-referenced binary spatial data, indicator variograms      374
Point-referenced binary spatial data, ISD      378—379
Point-referenced binary spatial data, Markov chain Monte Carlo (MCMC) methods      378
Point-referenced binary spatial data, matrix inversion      375
Point-referenced binary spatial data, modeling and inference      373—385
Point-referenced binary spatial data, modeling details      375—378
Point-referenced binary spatial data, noniterative Monte Carlo method      378
Point-referenced binary spatial data, residential properties dataset      380—384 380f—381f 382t 383f—384f
Point-referenced binary spatial data, spatial dependence modeling      374
Point-referenced binary spatial data, variogram modeling      374
Poisson distributions      5 25 390
Poisson gamma models      26
Poisson GLMMs      51
Poisson model, time series count data      168
Poisson prior      222—223
Poisson prior, classification trees      368
Poisson regression interactive multilevel modeling (PRIMM), small area inference      94 96
Poisson regression models, small area inference      94—96
Poisson regression, small area inference      98
Poisson sampling process, small area inference      94
Pollen data, time series count data, example      167—171
Pollutant level, DGLMs application      68—70
Polya tree distributions      10
Polytomous responses, WinBUGS      394—395
Population denominators, errors-in-variables      341
Post acute myocardial infarction practice guidelines      195—211
Post acute myocardial infarction practice guidelines, application      200—209
Post acute myocardial infarction practice guidelines, application, estimation      203
Post acute myocardial infarction practice guidelines, application, hospital profiling      203—204 206—208 207f—208f
Post acute myocardial infarction practice guidelines, application, modeling adherence      202—203 206
Post acute myocardial infarction practice guidelines, application, patient population      205—206 205f—206f
Post acute myocardial infarction practice guidelines, application, quality of care variability      204 208—209 209f—210f
Post acute myocardial infarction practice guidelines, application, study population      200—202
Post acute myocardial infarction practice guidelines, development      197—208
Post acute myocardial infarction practice guidelines, development, appropriateness ratings, elicitation      197—198 198f
Post acute myocardial infarction practice guidelines, development, combining angiography data      198—199
Post acute myocardial infarction practice guidelines, development, defining standard of care      199—200
Post acute myocardial infarction practice guidelines, development, estimation      199
Post acute myocardial infarction practice guidelines, development, results      200 201f
Posterior boxplots, MVP model      119f
Posterior boxplots, Probit hierarchical model      123f
Posterior boxplots, probit normal model      121f
Posterior computations, correlated binary data diagnostics      316—320
Posterior computations, correlated ordinal data models      138—142
Posterior densities plot, incidence probability      266 266f
Posterior densities plot, mean survival time      266—267 267f
Posterior dislikelihood function      8—9
Posterior distribution      8—9
Posterior distribution, compositional data      355—359
Posterior distribution, computations      48
Posterior distribution, DGLMs      60
Posterior distribution, Gibbs sampler for a      249 249f
Posterior distribution, normalizing constants      300
Posterior distribution, posterior medians      189f
Posterior distribution, properties, item response modeling      178—179
Posterior distribution, sample, Cox variable selection      302—305
Posterior distribution, sample, Markov Chain Monte Carlo, (MCMC) algorithm      117 127—128
Posterior distribution, small area inference      96—97
Posterior expected predicted deviance (EPD)      102
Posterior inference, DGLMs application, meningococcic meningitis      67f
Posterior inference, DGLMs application, pollutant levels and respiratory diseases      69f
Posterior mean, residential properties dataset      382t
Posterior medians, posterior distributions      189f
Posterior mode estimation, DGLMs      61—62
Posterior model probabilities      51t—52t 306t 307t
Posterior model probabilities, Monte Carlo approach      48—50
Posterior ordinate, correlated binary data      125—126
Posterior prediction, checks, item response modeling      187—188
Posterior prediction, comparison, correlated binary data diagnostics      322—323
Posterior prediction, distributions, histogram      192f
Posterior prediction, model choice      16
Posterior prediction, p-values, HSAs      102
Posterior prediction, probabilities, voter behavior data      325t
Posterior prediction, strategy, model adequacy      15
Posterior probability angiography      206f
Posterior sample size, WinBUGS      401
Posterior samples, Extended Gamma (EG) process prior      302
Posterior scatterplot, difficulty parameters      188f
Posterior, log-concave      5
Posterior, properties      8—10
Posterior-prior comparison      14
Potential Scale Reduction (PSR) statistic      203
Predictive approach, model selection      260—261
Predictive approach, variable selection GLM      288
Predictive distribution      236
Prior distributions, correlated binary data, diagnostics      316—317
Prior distributions, founder nodes      390
Prior distributions, GLMMs      44—46
Prior distributions, item response modeling      178
Prior distributions, properties      46—47
Prior distributions, scale mixture of multivariate normal (SMMVN) link functions      138
Prior distributions, theorems      46—47
Prior distributions, time series count data      162—163
Prior elicitation, generalized linear mixed models (GLMMs)      41—52
Prior elicitation, GLMMs study      51—52
Prior hyperparameters      47—48
Prior hyperparameters, correlated binary data      125—126
Prior link functions, exponential power distribution      246f 247
Prior model probabilities      306t 307t
Prior parameters      291—292
Prior parameters, sensitivity analysis      308
Prior posterior summary, multivariate probit (MVP)      126t
Prior specification, time series count data      163
Prior specification, WinBUGS      400—401
Prior theorems, item response modeling      178—179
Priors, unconditional      277
Probabilistic-specifications, Bayesian nonparametric modeling      10
Probit hierarchical model, posterior boxplots      123f
Probit link      390
Probit link, data augmentation, item response modeling      184—185
Probit link, functions      243
Probit link, functions, item response modeling example      188—191
Probit models      236 (see also “Logit normal model”)
Probit models, correlated binary data      119 126
Probit models, correlated binary data, computations      120—121
Probit models, posterior boxplots      121f
Probit models, sampling algorithm      121 128
Probit regression model      245—246
Proc Mixed      3
Proportional hazards model      289
Proportional hazards regression models, Cox’s partial likelihood      287 309
Pseudopriors      275
Quality assessment, medical care      196—197
Quasi-likelihood method      8
Quasi-likelihood method, small area inference      97
Radioimmunoassay, errors-in-variables, dilution errors      340
Random component      217—218 389
Random effects      26—31
Random effects, autocorrelated      30
Random effects, GLMMs      23—37
Random effects, strongly correlated      29—30
Random effects, systemic part h modeling      220
Random walk prior      30
Randomness      103—104
Rao — Blackwellized estimate      248 250 251f
Ratio-of-Uniform algorithm, correlated ordinal data models      141—142
Reference prior distributions, small area inference      92
Regression analysis      3
Regression calibration      339
Regression coefficients      4
Regression coefficients, prior distribution, Cox variable selection      293—297
Regression coefficients, standard errors      308t
Regression parameter estimates      211
Regression techniques      217
Rejection sampling histogram      252
Reparameterization, scale mixture of multivariate normal (SMMVN) link-functions      135—136
Repeated measure data      51—52
Residential properties dataset, grayscale plot      384f
Residential properties dataset, latent detrended variogram plot      383f
Residential properties dataset, local coordinates      380 381f
Residential properties dataset, point-referenced binary spatial data      380—384 380f—381f 382t 383f—384f
Residential properties dataset, posterior mean      382t
Residential properties dataset, standard deviation      382t
Residual effects, distribution      25—26
Respiratory diseases, DGLMs application      68—70
Restricted maximum likelihood (REML), small area inference      95
S-PLUS program, small area inference      96
Saddle point approximation, OGLMs      76
Sample survey designs      89
Sampling/Importance Resampling (SIR) method, correlated ordinal data models      141—142
SAS      3
Scale mixture of multivariate normal (SMMVN) link functions, correlated ordinal data models, item response data example      148—155
Scale mixture of multivariate normal (SMMVN) link functions, longitudinal binary responses      133
Scale mixture of multivariate normal (SMMVN) link functions, multivariate exponential power distribution family links (MVEP)      137
Scale mixture of multivariate normal (SMMVN) link functions, reparameterization      135—136
Score vector      5
Semi hierarchical centering, reparameterization technique      48 51
Semiparametric generalized linear models      10—12 217—228
Semiparametric generalized linear models, BMARS      222—223
Semiparametric generalized linear models, classical MARS      221—222
Semiparametric generalized linear models, curves and surfaces models      220—221
Semiparametric generalized linear models, link function g modeling      218—219
Semiparametric generalized linear models, systemic part h modeling      219—220
Sensitivity analysis, prior parameters      308
Set method, graphical model      403
Simulation based model checking, correlated binary data diagnostics      323—324
Simulation extrapolation (SIMEX)      339
Small area inference, Bayesian generalized linear models      89—105
Small Area Variations in Air-quality and Health (SAVLAH) project      333—337 341—342
Smooth function      4
Solomon — Wynne experiment      391
Spatial dependence modeling, point-referenced binary spatial data      374
1 2 3 4
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå