| 
			         | 
		         
		       
		        
			          | 
		          
		        
					| Àâòîðèçàöèÿ | 
		         
		        
					| 
 | 
		          
		        
			          | 
		          
		        
			        | Ïîèñê ïî óêàçàòåëÿì | 
		         
		        
			        
					 
				        
					
			         | 
		          
		        
			          | 
		          
			
			         | 
		         
       		 
			          | 
		          
                
                    | 
                        
                     | 
                  
		
			          | 
		          
		        
			          | 
		          
		
             
	     | 
	    
	      | 
	    
	    
            
		 |  
                
                    | Agresti A. — An introduction to categorical data analysis | 
                  
                
                    | 
                        
                     | 
                 
                                                                
			          | 
	          
                
                    | Ïðåäìåòíûé óêàçàòåëü | 
                  
                
                    
                        Logistic regression, multiple      122—129  
Logistic regression, probability estimates      106—107 110—111 208 211 275  
Logistic regression, quadratic term      108 136  
Logistic regression, qualitative predictors      118—129  
Logistic regression, residuals      115—118 274  
Logistic regression, sample size and power      269—273  
Logistic-normal model      231  
logit      73 77—78 261  
Logit models: adjacent-categories      216—218  
Logit models: as generalized linear model      73  
Logit models: baseline-category      206—211  
Logit models: continuation-ratio      218—220  
Logit models: cumulative      211—216  
Logit models: linear trend      77—78 104 125 212 216  
Logit models: loglinear models, equivalence      162—165 211  
Logit models: matched pairs      229—233  
Logit models: qualitative predictors      118—125  
Loglinear models      73 80—93 145—167 174—199  
Loglinear models as GLM with Poisson data      73 80 145—147  
Loglinear models, (XY, XZ, YZ)      151 156 163 176—177 185  
Loglinear models, (XZ, YZ)      151 154 156 176—177 185 195  
Loglinear models, association graphs      175—180  
Loglinear models, comparing models      156 185 194 196—198  
Loglinear models, computer software      270 273—274  
Loglinear models, degrees of freedom      154 196  
Loglinear models, four-way tables      158—162  
Loglinear models, goodness of fit      154—157 196  
Loglinear models, homogeneous association      151 158 163 185  
Loglinear models, independence      145—148  
Loglinear models, inference      154—158 185—188 195—199  
Loglinear models, logit models, equivalence      147 162—165 211  
Loglinear models, model selection      165—167 178—180  
Loglinear models, no three-factor interaction      151. See also Homogeneous association  
Loglinear models, odds ratios      107—108 149 152 157 160  
Loglinear models, residuals      91 155—156 181 242—243 268  
Loglinear models, saturated      148—149  
Loglinear models, three-way tables      150—158 176—177 185—188  
LogXact      133 194 203 264 272  
Lung cancer and chemotherapies      222—223  
Lung cancer and smoking      45—46 47 60—63 68 139 168  
Lung cancer meta analysis      60—62  
Lymphocytic infiltration      203—204  
Mammography      49 221  
Mann — Whitney test      38  
Mantel — Haenszel estimator      62 122 231 251  
Mantel — Haenszel test      See Cochran — Mantel — Haenszel test  
Marginal association      57—59 153 176—180  
Marginal distribution      17 57—58  
Marginal homogeneity      227 234 239—242  
Marginal maximum likelihood      231  
Marginal table      54 57  
Marginal table, same association as partial table      176—180  
Marijuana, cigarette, and alcohol use      152—157 172 178—180  
Matched pairs      226—249  
Matched pairs, CMH approach      229—231  
Matched pairs, dependent proportions      227—229  
Matched pairs, logit model      230—233  
Matched pairs, McNemar test      227—228  
Matched pairs, odds ratio estimate      231—233 251  
Matched pairs, ordinal data      237—242  
Matched pairs, Rasch model      233  
Maximum likelihood      8—10  
McNemar test      227—228 229—230 231 249  
Measures of association: difference in proportions      20 227—229  
Measures of association: kappa      246  
Measures of association: odds ratio      22  
Measures of association: relative risk      21—22  
Mental impairment, life events, and SES      221—222  
Meta analysis      62  
Meta analysis of lung cancer      60—62  
Mice and developmental toxicity      219—220  
Mid P-value      43—44 50  
Midranks      37 188 189  
Migraine headaches      68  
Missing people      138—139  
Mixed model      231  
ML      See Maximum likelihood  
Mobility, residential      252  
Model matrix      198  
Model selection      126—129 165—167 178—180  
Motorway accidents, Ml      4—8  
Multicollinearity      126  
Multinomial distribution      8 205  
Multinomial logit model      206  
Multinomial sampling      8 19 205  
Multiple correlation      129  
Multiple sclerosis diagnoses      254  
Murder rates      47 67  
Mutual independence      151  
Myocardial infarction and aspirin      20—25 45  
Myocardial infarction and coffee      140  
Myocardial infarction and diabetes      232—233  
Myocardial infarction and smoking      25—27 136—137  
Natural parameter      73  
NCAA athlete graduation rates      138  
Nested models      196  
Newton — Raphson algorithm      93—94 195—196  
No three-factor interaction      151.See also Homogeneous association  
Nominal response variables      2—3 188—190 205—211 234—237 239—240 242—246  
Normal distribution      73—74 97  
Observational study      27  
Odds      22 107  
Odds ratio      22 258  
Odds ratio and logistic regression models      107—108  
Odds ratio and loglinear models      149 152 157 160  
Odds ratio and relative risk      25—27 142  
Odds ratio and zero counts      25 191—192  
Odds ratio with case-control data      25—27 108 232—233  
Odds ratio with retrospective data      25—27 232—233  
Odds ratio, ASE      24  
Odds ratio, bias      25 191  
Odds ratio, conditional      57 59 61—64 152 176  
Odds ratio, confidence intervals      24 44 66 157 269  
Odds ratio, exact inference      44 64—66 269  
Odds ratio, homogeneity, in   tables      63—64 66 122 269  
Odds ratio, invariance properties      23  
Odds ratio, local      183  
Odds ratio, Mantel — Haenszel estimate      62 122 231  
Odds ratio, matched pairs      231  
Offset      86 271  
Ordinal data      2—3  
Ordinal data in logit models      211—220  
Ordinal data in loglinear models      182—185 187—188  
Ordinal data, exact tests      45 268  
Ordinal data, marginal homogeneity      240—242  
Ordinal data, ordinal versus nominal treatment of data      36—37 49  
Ordinal data, quasi symmetry      237—241  
Ordinal data, scores, choice of      37—38 184  
Ordinal data, testing independence      34—39 184—185 187—188  
Ordinal data, trend in proportions      34—39  
Ordinal quasi symmetry      237—241 277—278  
Osteosarcoma      203—204  
Overdispersion      5  219—220  
P-value and Type I error probability      41—43  
Paired comparisons      246—249  
Parameter constraints      120—121 148—149  
Partial association      54 57  
Partial association, partial table      54  
Partial association, same as marginal association      176—180  
Partitioning chi-squared      32—33 52 198 261  
Passive smoking and lung cancer      68  
Pathologist diagnoses      242—246  
Pearson chi-squared statistic      28 89  
Pearson chi-squared statistic and residuals      51 91 115 155 196  
Pearson chi-squared statistic, chi-squared distribution      28 196  
Pearson chi-squared statistic, comparing models      197—198  
Pearson chi-squared statistic, degrees of freedom      28 111 154 196  
Pearson chi-squared statistic, exact test      42—45  
Pearson chi-squared statistic, goodness of fit      89 113 154 196  
Pearson chi-squared statistic, independence      30 52  
 | Pearson chi-squared statistic, loglinear model      154 196  
Pearson chi-squared statistic, sample size for chi-squared approximation      34 194  
Pearson chi-squared statistic, sample size, influence on statistic      34 52  
Pearson chi-squared statistic, two-by-two tables      52  
Pearson residual      51 91  
Pearson residual, Binomial GLM      115 274  
Pearson residual, independence      51  
Pearson residual, Poisson GLM      91 156 196 271  
Pearson, Karl      257—260  
Poisson distribution      4  
Poisson distribution, binomial, connection with      99  
Poisson distribution, mean and standard deviation      5  
Poisson distribution, overdispersion      5   
Poisson distribution, Poisson loglinear model      80—93 145—167 198  
Poisson distribution, Poisson regression      80—93  
Poisson distribution, Poisson sampling      5—6 18  
Poisson distribution, residuals      91 155—156  
Poisson regression      80—93  
Poisson regression, computer software      270  
Poisson regression, degrees of freedom      89  
Poisson regression, goodness of fit      89—93  
Poisson regression, identity link      85 101 102  
Poisson regression, interaction      102  
Poisson regression, loglinear model      80—84 145—167 198  
Poisson regression, rate data      86—87 99  
Political ideology and party affiliation      201—203 213—215 217  
Political party and gender      30—33  
Political party and race      48  
Political views, religious attendance, sex, and birth control      170—171  
Polychotomous models      205—211  
Popularity of prime minister      226—229  
Power      130—132  
Practical vs. statistical significance      52 161—162  
Premarital sex and birth control      181  
Premarital sex and extramarital sex      238—239 241—242  
Presidential voting and racial items      169  
Prime minister's performance      226—229  
Probability estimates      106—107 110—111 208 211 275  
Probit model      79—80 144 270 272  
Profile likelihood      272  
Promotion discrimination      65—66 69 70  
Proportional odds model      212—216 241—242 264 276  
Proportions: as sample mean      10  
Proportions: Bayesian estimate      13  
Proportions: dependent      227—229  
Proportions: difference of      20 227—229  
Proportions: estimating using models      106—107 110—111 208 211 275  
Proportions: independent      20  
Proportions: inference      10—12 15  
Proportions: ratio of (relative risk)      21—22  
Proportions: standard error      10  
Psychiatric diagnosis and drugs      48  
Psyllium and cholesterol      224 254  
Quasi independence      243—244 277  
Quasi symmetry      235—241 244—245 248 253 256 262 277—278  
Racial opinion items      169  
Radiation therapy and cancer      50  
Random component (GLM)      72  
Random effect      231  
Ranks      37 38 188 189  
Rasch model      233 241 261  
Rater agreement      242—246  
Rates      86—87 99 100 101  
Reincarnation, belief in      14  
Relative risk      21—22  
Relative risk and odds ratio      25—27 142  
Relative risk, confidence interval      47  
Religious attendance      170—171 200—201  
Religious mobility      251—252  
Residential mobility      252  
Residuals: adjusted      31 91 118 155—156 271  
Residuals: binomial GLM      115—118  
Residuals: deviance      96  
Residuals: independence      31 181 242—243 268  
Residuals: Pearson      51 91 115 156 196 271  
Residuals: PoissonGLM      91 155—156  
Residuals: standardized      91  
Response variable      2 166  
Retrospective study      26 231—233  
Ridits      275  
Russian roulette (Graham Greene)      13  
Sample size determination      130—132  
Sampling      3—8 18—19  
Sampling zero      191  
SAS: CATMOD      274—276  
SAS: CMH methods      190 268—269 274—275  
SAS: FREQ      190 267—269  
SAS: GENMOD      269—274 277—278  
SAS: LOGISTIC      270—273  
SAS: logistic regression      270—273  
SAS: loglinear models      273—274  
SAS: Poisson regression      270—271  
SAS: two-way tables      267—269  
Saturated model: generalized linear model      96  
Saturated model: logistic regression      114  
Saturated model: loglinear models      148—149  
Score test      89 94—95  
Scores, choice of      37—38 184  
Seat belt and death      169—170  
Seat belt and injury      47 158—162 225  
Sensitivity      51  
Sex opinions      252  
Sexual intercourse and gender and race      138  
Significance, statistical versus practical      52 161—162  
Silicon wafer defects      98—99  
Simpson's paradox      57 67 258  
Small samples:   and        34 194  
Small samples: adding constants to cells      25 191—192  
Small samples: exact inference      39—45 64—66 132—135  
Small samples: infinite parameter estimates      133—135 191—193 203—204  
Small samples: zero counts      134 190—192  
Smoking and lung cancer      45—46 47 60—63 139 168  
Smoking and myocardial infarction      25—27 136—137  
Snoring and heart disease      75—80  
Soccer attendance and arrests      100—101  
Soccer odds      46  
Space shuttle and O-ring failure      135  
Sparse tables      190—194  
Spearman's rho      38  
Specificity      51  
SPSS      267 268 271 274 276 278  
Square tables      226—249  
Standardized regression coefficient      142  
Standardized residuals      see Pearson residuals  
StatXact      44 65 194 264 268 269  
Stepwise model-building      127—129 179—180 273  
Strokes and aspirin      45  
Structural zero      191  
Subject-specific effect      231 241  
Sufficient statistics      195 204  
Symmetry      227 234—235 239—241 253 277—278  
Systematic component (GLM)      72  
Tea tasting      40—44  
Teen sex and premarital sex      181 252  
Teenage birth control and religious attendance      200—201  
Tennis rankings      246—248 255  
Tetrachoric correlation      258  
Three-factor interaction      151 160—162 164  
Three-way tables      53—66 150—158 176—177 185—190  
Tolerance distribution      79  
Trains and collisions      101  
Trend test      34—39 143 188 268  
Uniform association model      183  
Wald statistic      88 109  
Weighted least squares      261 264 276  
Wilcoxon test      38  
Women tennis players      246—248  
Yates continuity correction      43  
Yule's Q      258  
Yule, G.Udny      258—259  
 |   
                            
                     | 
                  
			  | 
		          
			| Ðåêëàìà |  
			  | 
		          
			 |  
                             
         |