Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Lawless J.F. — Statistical Models and Methods for Lifetime Data
Lawless J.F. — Statistical Models and Methods for Lifetime Data



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Statistical Models and Methods for Lifetime Data

Àâòîð: Lawless J.F.

Àííîòàöèÿ:

Doubling as a reference work and as a textbook for advanced students, this book provides a unified treatment of the models and methods used to analyze lifetime data. Chapters concentrate on topics like: observation schemes, censoring, and likelihood; non-parametric and graphical procedures; inference procedures for parametric models; inference procedures for log-location-scale distribution; parametric regression models; semi-parametric multiplicative hazards regression models; rank-type and other semi-parametric procedures for log- location-scale models; multiple modes of failure; goodness-of-fit tests; and, multivariate and related analyses. Key concepts are illustrated with extensive examples from engineering and the biomedical sciences. Lawless teaches statistics and actuarial science at the University of Waterloo


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: second

Ãîä èçäàíèÿ: 2002

Êîëè÷åñòâî ñòðàíèö: 664

Äîáàâëåíà â êàòàëîã: 19.09.2008

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Lakatos, E.      428 595
Lam, K.F.      587
Lamberti-Pasculli, M.      596 608
Lancaster, T.      40 258 329 523 595
Lange, K.      555 595
Lange, N, T.      389 581
Large sample methods      see “Asymptotic results” “Likelihood “Maximum “Score
Larntz, K.      330 582
Larson, M, G,      456 595
Latta, R.B.      417 428 595
Lawless, J.R      51 69 70 77 78 122 123 138 201 203 222 224 228 240 249 251 257 258 266 307 312 321 329 330 331 333 339 381 389 390 396 398 428 450 451 486 492 512 518 523 524 525 529 564 565 571 583 585 586 587 588 589 590 591 592 593 595 605 608 609
Lawrance, A.J.      458 459 584
Leadbetter, M.R.      137 608
Least squares estimation      306—308
Least Squares estimation with censored data      427 429
Lee, E.T.      416 428 596
Lee, E.W.      524 525 596
Lee, K.C.      388 390
Lee, M.L.T.      519 522 525 596
Lee, Y.W.      587
Lehmann family      344
Lehmann, E.L.      428 472 582 596
Lellouch, J.      600 603
Lemon, G.      201 596
Length-biased sampling      70 78
Leteneur, L.      592
Leurgans, S.      416 428 596
Lewis, P.A.W.      154 532 583
Li, G.      475 486 596 606
Liang, K.-Y      523 524 551 579 596 604
Lieblein, J.      39 98 257 596
Liestol, K.      580
Life tables      128—136 138 144—145
Life tables, asymptotic properties of estimates      133—136
Life tables, bias and inconsistency of estimates      135—136
Life tables, censoring (withdrawals) in      129 132 138 145
Life tables, multiple decrement      456
Life tables, standard estimates      130
Life tables, variance estimation      130—131 135—136
Life tables, with covariates      370—376
Life tests      1 3 7—8
Life tests, planning      157—164 252—258
Life tests, with exponential distribution      152—154 157—164
Life tests, with replacement      154
Life tests, with Weibuli distribution      255—258 (see also “Accelerated life tests”)
Lifetimes      1—3 (see also “Distributions lifetime”)
Likelihood      49 74 545
Likelihood function      49 545
Likelihood function, concavity and unimodality      200 331—332
Likelihood function, log likelihood function      54 61
Likelihood function, marginal      348 551—552
Likelihood function, maximized or profile      166—167 547—548
Likelihood function, nonparametric      50 83—86 136
Likelihood function, penalized      137
Likelihood function, plots      166 188—190
Likelihood function, relative likelihood function      188—189
Likelihood function, unbounded      186—187 332 “Information” “Likelihood “Maximum “Partial “Score
Likelihood function, with censoring      52—61 75
Likelihood function, with grouped data      133 145 174—175 200
Likelihood function, with interval censoring      63—66 176—177 200
Likelihood function, with truncation      51 68 71 178—181 200—201
Likelihood ratio statistic      61 72 548—550
Likelihood ratio statistic, signed square root of      149 216 550
Lin, D.Y.      103 389 390 422 424 425 429 484 486 491 523 524 525 575 588 596 597 605 608
Lindeboom, M.      523 597
Lindsey, J.C.      128 138 142 200 206 330 389 524 580 588 597
Lindsey, J.K.      200 206 597
Linear hazard function (Rayleigh) distribution      33
Linear models      see “Regression models linear”
Lininger, L.      416 428 597
Link, C.L.      137 388 597
Littell, A.S.      138 597
Little, R.J.A.      66 597
Lloyd, E.H.      259 597
Loader, C      109 597
Local average      110
Local likelihood      109
Location-scale parameter models      26—29 211 561—566
Location-scale parameter models, comparison of distributions      235—238
Location-scale parameter models, confidence intervals and tests      213—218 564—565
Location-scale parameter models, estimators for      257—260 561—562
Location-scale parameter models, goodness of fit for      483—484
Location-scale parameter models, maximum likelihood      212—213
Location-scale parameter models, misspecification      307—308
Location-scale parameter models, planning-studies      252—257 258 308—311
Location-scale parameter models, prediction      266—267
Location-scale parameter models, probability plots for      100—103 108—109
Location-scale parameter models, rank tests for      401—406
Location-scale parameter models, regression models      35 270—271 308 401—402
Location-scale parameter models, with shape parameters      27 243—244 “Generalized “Generalized “Log-location-scale “Logistic “Normal “Regression
Lockhart, R.A.      187 201 597
Log-gamma distribution      28—29 44
Log-location-scale models      26—29 211 270—273
Log-location-scale models, with time-varying covariates      320—321 (see also “Location-scale parameter models” “Regression
Log-logistic distribution      23—24 39 42
Log-logistic distribution, inference for      181—182 231—235
Log-normal distribution      21—23 39 42 230
Log-normal distribution, inference for      180—181 230—235
Log-normal distribution, with threshold parameter      186 208
Log-rank test      346 388—389 406—407 409—411
Log-rank test, weighted      414—417 428
Log-rank test, with stratification      415—419
Logistic discfete data model      371—379 383
Logistic distribution      23—24 231—235
Logistic distribution, bivariate      47
Logistic distribution, regression models      303—306
Long-term survivors      183 326—327
Longitudinal surveys      66
Lost to followup      52
Louis, T.A.      75 200 428 432 523 524 525 581 591 597 605
Loynes, R.M.      483 486 597
Lu, C.J.      520 597
Lu, J.C.      525 597
Lu, Jin      522 525 597
Lunn, M.      456 597
Lupus nephritis      394 574—575
LuValle, M.J.      330 598 599
Lynden-Bell, D.      138 598
Maccario, S.      603
Machado, S.G.      339 598
MacKay, R.J.      75 388 455 457 593
Mackenzie, G.      330 598
Mackenzie, T.      577
Mailer, R.A.      40 201 330 598
Maintenance      39 525
Makov, U.E.      607
Manatunga, A.K.      523 598
Mandel, J.      604
Mann, N.R.      228 257 258 266 479 490 586 595 598
Mantel, N.      388 389 428 487 528 598 601 602
Mantel-Haenszel test      see “Log-rank test”
Manton, K.G.      456 598 608
Marek, P.      415 430 603
Markers, biological      518—519
Markov process      514—515
Marriage duration      2 71
Marshall, A.W.      523 579 598
Martingales      62—63 95—96 567—568 570
Martz, H.F.      75 209 598
Marzec, L.      484 598
Marzec, P.      484 598
Matched pairs      see “Paired data”
Matthews, D.E.      137 456 599
Maximum Likelihood Estimation      49 54 61—64 545—552
Maximum likelihood estimation, and parameter transformations      88 149 200 202
Maximum likelihood estimation, asymptotic results for      61—63 75 545—552
Maximum likelihood estimation, maximum likelihood estimate      49—50 546
Maximum likelihood estimation, nonexistence of m.l.e      148 332
Maximum likelihood estimation, nonparametric      80 83—86 136
Maximum likelihood estimation, numerical methods      166—167 555—557
Maximum likelihood estimation, semiparametric      349—350 384—388 396 “Likelihood “Score
Maximum likelihood estimation, with censored data      61—63
May, S.      486 599
Mayer, K.U.      580
Mbreau, T.      389 486 600 603
McCool, J.I.      228 229 238 255 257 261 262—333 335 599
McCullagh, P.      283 372 599
McDonald, J.S.      600
McDonald, J.W.      138 584
McGilchrist, C.A.      523 530 599
Mcintosh, A.      389 593
McKeague, I.W.      484 599
McKnight, B.      605
McNeil, D.      456 597
McPherson, K.      602
Mead, R.      555 600
Mean lifetime restricted to T      98
Mean lifetime restricted to T, estimation of      98 140—141
Mean residual lifetime      41 141
Mechanistic models      325
Median      9
Median, nonparametric estimation of      94 137
Median, parametric estimation of      168—170 267
Meeker, W.Q.      75 126 201 215 253 255 256 257 258 260 310 311 329 330 525 586 591 597 599 601
Meeter, C.A.      330 599
Mehrotra, K.G.      428 430 592 599
Meier, R      80 136 137 138 141 593 599
Mendenhall, W.      200 456 459 461 599
Mesbah, M.      600
Michalek, J.E.      599
Microcircuit failures      267
Mihalko, D.      599
Miller, R.G.      205 429 599
Missing data      66—67 201
Missing data, censoring times      66—67 138 142 201
Missing data, missing at random (MAR)      66
Missing data, missing completely at random (MCAR)      66
Mixture models      33—34 40 42 181 206—207
Mixture models of exponential distributions      42 45
Mixture models of normal distributions      201
Mixture models of Weibull distributions      183—185 201 “Frailty
Miyakawa, M.      463 600
Model checking      see “Goodness of fit tests” “Graphical
Models      2 38 39
Models, misspecification      553
Models, nonparametric      38
Models, parametric      16 35 38—39
Models, semiparametric      35 273 341 401
Moertel, C.G.      103 491 575 600
Moeschberger.M.L.      5 390 417 428 455 456 523 584 594 600
Mogg, J.M.      593
Monti, M, A.      584
Moolgavkar, S.      557 608
Moore, A.H.      200 228 590
Mori, M.      524 602
Mortality data      487
Morton, R.      428 600
Mukherjee, J.      583
Muller, H.G.      137 600
Multiple causes of death      see “Multiple modes of failure”
Multiple events      491 512
Multiple modes of failure      8 37 40 47 433—437 455
Multiple modes of failure, cumulative incidence or subdistribution functions      434 452—456
Multiple modes of failure, grouped data      448—449 456 461—462
Multiple modes of failure, latent failure time model      435 457
Multiple modes of failure, likelihood function      435—437
Multiple modes of failure, masking      463
Multiple modes of failure, mode-specific hazards      37 433
Multiple modes of failure, nonparametric methods      437—444
Multiple modes of failure, parametric methods      444—449 456
Multiple modes of failure, proportional or multiplicative hazards      447 449—456
Multiple modes of failure, regression models      444 447 449—456 “Multivariate
Multiplicative hazards models      322—324 341—342 357 388—389 484—485
Multistate models      493 513—518
Multivariate lifetime distributions      36—37 40 46 493—507 523
Multivariate lifetime distributions, and clustered data      494 498—500
Multivariate lifetime distributions, and copulas      495—496 523
Multivariate lifetime distributions, and sequences of lifetimes      508 (see also “Competing risks” “Multiple
Multivariate lifetime distributions, association      523 526
Multivariate lifetime distributions, Burr model      496—497
Multivariate lifetime distributions, Clayton model      496—497 526
Multivariate lifetime distributions, independence working models      501—504 524
Multivariate lifetime distributions, inference for      500—504
Multivariate lifetime distributions, logistic, model      47
Multivariate lifetime distributions, nonparametric methods      500—501
Multivariate lifetime distributions, random effects      497—500 523
Multivariate lifetime distributions, regression models      498—500
Multivariate lifetime distributions, semiparametric PH models      503—504
Munoz, A.      605
Murphy, S.A.      390 551 600
Murray, W.      588
Murthy, D.N.P.      30 200 258 580
Naes, T.      388 600
Nagaraja, H.N.      578
Nagelkerke, N.J.D.      389 600
Nair, V.N.      108 137 600
Namboodiri, K.      138 456 600
Nelder — Mead procedure      555
Nelder, J.A.      283 372 555 599 600
Nelson — Aalen estimate      85—86 137
Nelson — Aalen estimate, and product-limit estimate      84—85 97
Nelson — Aalen estimate, and truncated data      117 122
Nelson — Aalen estimate, as an m.l.e.      86
Nelson — Aalen estimate, asymptotic properties      95—98 570
Nelson — Aalen estimate, plots of      86—87 107
Nelson — Aalen estimate, variance estimation      86 96—97
Nelson, W.B.      3 7 39 40 108 109 126 137 231 232 257 260 267 311 321 329 330 444 455 456 599 600 601 604
Neuhaus, J.      500 524 601
Newton — Raphsori method      555
Neyman, J.      469 601
Ng, E.J.M.      583
NickeII, S.      258 329 595
Nielsen, G.G.      524 601
Nielsen, IP      525 587 591
Nikulin, M.S.      330 429 522 578 579
nonparametric methods      38 79
Nonparametric methods, and interval-censored data      124—128
Nonparametric methods, and model checking      98—108
Nonparametric methods, and plots      81—82 86—87 98—108
Nonparametric methods, and truncated data      116—123 (see also “Maximum likelihood estimation” “Nelson “Product-limit
Nonparametric methods, estimation of hazard or density functions      109—115
Nonparametric methods, estimation of probabilities and survivor functions      80—83 87—93 115—128
Nonparametric methods, estimation of quantiles      93—95
Nonparametric methods, tests      344 402—406 413—414
Normal distribution      21 24 230
Normal distribution, estimation and tests      230—235 242—243
Normal distribution, goodness of fit tests      480—481 486
Normal distribution, relationship to log-gamma      see also “Log-normal distribution” “Regression
Normand, S.-L      521 525 585
Oakes, D.      329 339 390 428 501 516 523 524 525 527 583 598 601
Observation schemes      51 75
Observation schemes, intermittent observation      63—66
Observation schemes, prospective observation      51
Observation schemes, retrospective observation      70—7l
Oleinick, A.      487 601
Olivier, D.      330 389 595
Olkin, I.      523 598
Oosting, J.      600
Optimization procedures      555—557
Order statistics      542—543
Order statistics, and linear estimation      259—260
Order statistics, and type 2 censoring      55—57
Order statistics, asymptotic results for      141—142 543
Order statistics, from exponential distribution      152—153 476—477 543
Order statistics, from extreme value distribution      478—479
Order statistics, from norma] distribution      480—481
Order statistics, from uniform distribution      543
Order statistics, moments      259 479 543
Order statistics, prediction of      203 265—266
Outlier      288
1 2 3 4 5
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå