Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Strauss W.A. — Partial Differential Equations: An Introduction
Strauss W.A. — Partial Differential Equations: An Introduction



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Partial Differential Equations: An Introduction

Автор: Strauss W.A.

Аннотация:

Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations.

In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs, the wave, heat and Lapace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 1st edition

Год издания: 1992

Количество страниц: 440

Добавлена в каталог: 13.09.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Potential electromagnetic      342
potential energy      39 173 218 286
Potential function      17 18 279 370
Potential square well      353
Potential velocity      23 147
Power series      388
Power series, method’of      239 242 253 274 394
Pressure      23 343
principal quantum number      281
probability      17 147
Propagation speed      37 53 204
Propagator of diffusion equation      48
Proton      17 353
Quadratic elements      214
Quantum electrodynamics (QED)      354
quantum mechanics      17—18 241—244 300
Quantum mechanics, angular momentum in      279—282
Quantum numbers      279 281
Quarks      353
Radar      14
Radial vibrations      256
Radiation      22 23 90 92 93
Radiation, condition      24 348
Raising and lowering operators      280
Rankine — Hugoniot formula      365
Rarefaction wave      363
Ray      231
Rayleigh quotient      284 298
Rayleigh — Ritz approximation      175 289—290
Rayleigh — Ritz approximation for Neumann condition      294
Reaction-diffusion problem      381
Reciprocity principle      180
Recursion relation      240 253 269 275 281
Reflected point      181 183
Reflection of waves      59—64 346—352
Reflection, coefficient      347 352 370
Reflection, method      55—64 181—188
Refraction of light      374
Region      386
Regular singular point      242 252—253 394
Relativity theory      39 231
Reservoir of heat      22
Resistance      12 13 87 144
Resonance      145
Retarded potential      234
Riemann function      323—324
Rigid wall, BC at      23
Robin condition      20 21 22
Robin condition, disk      167
Robin condition, half-line      58
Robin condition, interval      45 90—99 119
Robin condition, lowest eigenvalue      288
Robin condition, rectangle      155 251
Robin condition, uniqueness      168
Rodrigues’ formula      276
Rotation invariance      31 150—153
Rotations in quantum mechanics      280
Roundoff error      191
Russell, J.S.      367
Saddle point      375
Scalar potential      342
Scattering, acoustic      24
Scattering, and continuous spectrum      351—353
Scattering, by medium      347
Scattering, data      371
Scattering, inhomogeneous string      346
Scattering, inverse      369—372
Scattering, of light      22
Scattering, of plane wave by sphere      347—350
Schrodinger equation      17—18 23—24 89 237—244 280—282 350
Schrodinger equation, and angular momentum      279—282
Schrodinger equation, cubic      372 374
Schrodinger equation, finite interval      89
Schrodinger equation, free space solution      237—238
Schrodinger equation, harmonic oscillator      239
Schrodinger equation, hydrogen atom      241—244 280—282 351
Schwarz inequality      139
Second order equations      27—30
Second vanishing theorem      386
Secondary bifurcation      379
Seismic wave      14
Separated solution      82 245
Separation of variables      82—97
Separation of variables, in polar coordinates      159
Separation of variables, space variables      155 159 303
Separation of variables, special geometries      155
Separation of variables, time variable      302 345
Sharp images      223
Shock wave      2 359—366
Sign function, transform of      326
Simple transport      2 10
Sine-Gordon equation      372
Singular point of ODE      393
Singular Sturm — Liouville problem      299
Singularities, absence of      53 80 163
Singularities, and difference schemes      204
Singularities, of waves      53 64 232—233 322—323
Singularities, shocks      363—365
Snell’s law of reflection      377
Soap bubble      374 377
Soft wall, BC at      23
Solid light cone      217
Solid spherical harmonic      263
Solid vibrations      257—263
Solitons      367—372
Sound      22—23 344—346
Source function, diffusion equation      48 65 236 316 321—322 323—324 330—331
Source function, Klein — Gordon equation      356—357
Source function, wave equation      322—323 331—332
Source operator, diffusion equation      66
Source operator, wave equation      75 77 233
Source term, diffusion equation      65—68
Source term, wave equation      69—78 142 233—234
Space-time      217
Spacelike surface      231
Spacelike vector      231
Specific heat      16
Spectral lines      282
Spectrum      351
speed of light      39 216—223 230 339
Speed of propagation      37 53 204
Sphere, surface area of      396
Spherical coordinates      152 257
Spherical harmonic      259 261—263 279 348
Spherical means      223
Spherical wave      37 40
Spring, at boundary      21
Square pulse, transform of      326
square well potential      353
Stability      25 43 70
Stability, numerical      194—199 203
Stability, of solitons      367—372
Stability, of stationary states      380—383
State, bound      241 351
State, buckled      380
State, ground      173 243 285
State, of electron      17 243
Stationary point      376
Stationary wave      16 146
Steady fluid flow      147
Steady state      16 24 154
Step function      318
Sturm — Liouville problem      298—300
Subdomain, eigenvalues for      308—310
Subharmonic function      188
Successive overrelaxation      210
Superposition principle      3 359
Supersonic airflow      14 359
surface      391
Surface, area of a sphere      396
Symmetric boundary conditions      115—119 176 247 299
Telegraph equation      358
Temperature      15—16 22 41 49 97
template      192
Tension      11 13
Term-by-term differentiation      389
Term-by-term integration      130 389
Tessera      266
Test function      314—315 319
Time slices      230
Timelike vector      231
Tiny perturbation      25
topology      26
translate      45
Translation      150
Transmission, coefficient      347 352 370
Transmission, line      13
Transmitted wave      347
Transport equation      10 233
Traveling plane wave      347
Traveling wave solution      368
Trial function for Dirichlet eigenvalues      285 289 308—309
Trial function for finite elements      212—215
Trial function for Neumann eigenvalues      294 309—310
Trial function for Robin eigenvalues      298
Triangulation      212
Truncation error      191
Tuning fork      100
Types of equations      27—31
Ultrahyperbolic PDE      30
Uncertainty principle      328
Underdetermined      25 26
Uniform convergence      121 135—136 389
Uniform norm      70
Uniqueness      25—26 42—43 70 149—150 173
Unstable state      380
Vanishing theorems      385—386
Variable coefficient equation      7—9 297—300
Vector, field      387
Vector, potential      342
Vector, space      5 118 251
Velocity potential      23 147
Vibrating bar      2 100 378
Vibrating drumhead      13—14 20 251—256 299
Vibrating string      11 20 23 25 32—37 324
Vibrating string, damped      40
Vibrating string, energy      90
Vibrating string, frequencies      85 256
Vibrating string, hammer blow      37 108—109
Vibrating string, inhomogeneous      346—347
Vibrating string, initial and boundary conditions      21
Vibrating string, plucked      35—36 39
violin string      87
Vorticity      345
Water wave      13 367
Waterbug      40 227
Wave equation      12 20 22 32 216 376
Wave equation, acoustics      22—23 345
Wave equation, ball      257—263
Wave equation, circle      251—256
Wave equation, energy      38 99 218
Wave equation, finite interval      61—64 82—85 89 97
Wave equation, general solution      32 222 227
Wave equation, half line, Dirichlet condition      59
Wave equation, in absence of boundaries      32 216
Wave equation, in space-time      216—235
Wave equation, inhomogeneous      69 233
Wave equation, inhomogeneous, boundary conditions      76 142 336
Wave equation, inhomogeneous, half-line      75
Wave equation, initial conditions      34 222 227
Wave equation, Lorentz invariance      221 —222
Wave equation, method of spherical means      223
Wave equation, negative eigenvalue      97
Wave equation, polar coordinates      251
Wave equation, scattering      347
Wave equation, spherical coordinates      257
Wave equation, two-dimensional      14 226—227
Wave equation, with a source      69—76 233—234
Wave, function      17
Wave, speed      12 364
Wave, with a source      69—76 233—234
Wave, with interaction      2 205
wedge      164—165
Welded rods      25
Well-posed problem      25—27 43—44 70
wronskian      352
Yang — Mills equations      355
Zabusky, N.      368
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте