111  
       31  
       83  
 -adequate fields      234  
       19.14  
       19.13  
       256  
       213  
       4  
       253  
       75  
       29.8  
 ,  ,        48  
 ,        74  
 , F(M)      78  
 ,        27  
       28  
       30  
       37  
       80  
 ,  ,        210 212  
       2 7.16  
       32  
       33  
       37  
       238—240  
 ,        151  
       13.12  
       133  
       261  
 ,        33 17B  
 ,        57  
       173  
       167  
       52  
       233  
 ,        49 116  
       13  
 ,        57  
       120  
       8.18  
       19 31  
 ,        74  
       56  
       51  
 ,        239  
       210  
 ,   (M)      74  
       54 56  
 ,        12  
       104 114  
       117  
       82  
       226  
       223 225  
       21 31 38 7.20 9.9  
       19.14  
       19.13  
       85  
       92  
       66  
       41  
       302  
       303  
       65  
       72  
 ,        76  
 ,        41  
 ,  ,        64  
       78  
       8.19  
       78  
       136  
 ,        198  
 ,        185  
       117  
       165  
       306  
 ,        78  
       156  
 -topology      5.11  
 -topology, vague      24.13  
 -uniformity      5B  
       22  
       42  
       42  
 ,        92  
 ,  ,  ,        64 90  
 ,        66  
       237  
       42  
       259  
       1  
       5  
 ,  ,        64  
       9.6  
       53  
       285  
 ,        141  
       138  
       5.3 58  
 ,        59  
       43 59 61  
       32  
       54 57  
 -additive content      34  
 -algebra (= tribe)      6.12  
 -bounded measures      13.13  
 -closure      6.16  
 -finite sets and upper gauges      13A 138  
       47  
       305  
       258 261 270  
       158  
       158  
       40  
 ,        14  
       17A  
       62  
       54  
       56  
       22.8  
       9.1  
 , |U|      45  
       116 11.8  
       45  
'      47  
( ,  )      138  
(A),(n),(x)      18  
*-continuity      3D 31  
*-continuity is determined on a uniformly dense subspace      3.15  
*-continuity of a product      27.3 32.1  
*-continuity of an integral of a field      25.4  
*-continuity, weak      4D  
*-continuous elementary integrals      3D see  
*-continuous, measures      3D 31 see  
1      48  
A(P)      247  
Absolute continuity for Banach-valued measures      31  
Absolute continuity for upper S-norms      7.20 see 15.8  
Absolute continuity in a Riesz space      21  
Absolute continuity, characterization for scalar measures      3.8 6.7 see 29A  
Absolute continuity, uniform absolute continuity of linear maps on a convex set      119—120  
Absolute value      13  
Adapted maps      28B  
Adequate cover by integrable sets      86 see  
Adequate cover by measurable sets      170  
Adequate field      26B  
Adequate map      28A  
Adequate partition      16A 156  
 | Admissible function      252  
Admissible topology      108  
Algebra of sets      6 11  
Almost compact measures      37A  
Almost compact-valued functions      178  
Almost everywhere (a.e.)      74  
Almost separably-valued functions      178  
AM      147  
AU      153  
B-continuous integral of a field      26A-B  
B-continuous measure (= B-measure)      3D see 4.19  
B-continuous part of a measure      3 11 17 3  
B-continuous upper gauge      8C see 11.8  
B-continuous upper gauge, associated with a lifting      34.1  
B-continuous, weakly B-continuous linear maps      4D 11A 116  
Baire category theorem      11.5  
Baire functions and sets      6.16  
Baire functions and sets, dominated      66 8.23  
Baire functions and sets, equivalent to an integrable function      7.18  
Baire measurable functions      19.13  
Banach lattice      3E 36 see 10  
Banach lattice with order-continuous norm      3E 36 see 9A 94  
Banach space over a Banach lattice      3E 36 see  
Band      18  
Band decomposition of Riesz      2.18 see  
Band of *-measures      3.10 3.11 3E  
Band of diffuse, discrete, or tight measures      24C  
Band, a band in a band is a band      2 24  
Band, characterizations      2.20 2.21  
Bauer's theory      17A see 10.7 24.1  
Bochner integrable      78  
Bochner integral      10A  
Bochner integral of a weakly compact linear map      11C see  
Borel functions and sets      18.21  
Borel functions and sets, dominated      92 8.23  
Borel measurability      19.14  
Borel — Cantelli lemma      32.5  
C(f)      178  
C(n), C(n,M)      330  
Caratheodory      19.D  
ce(),        107  
Chain rule      22.9  
Character (space) of        20B see  
Character (space) of a family of functions      54  
Clan (= ring of sets)      1B 5 see 6.1 "Full" "Extension" "Spectrum"  
Clan of integrable sets      8.4  
co(),        106  
Compact and  -compact linear maps      10B  
Compactness criterion for admissible topologies      10.6  
Compactness of        21.11  
Compactness properties of the integral      10B  
Completeness of        7.9  
Completeness of        7.12  
Completeness of        20.3  
Completeness of a Riesz space      17  
Complex measures      3.14  
Conditional distribution      36.10  
Conditional expectation      29A-C  
Conditional expectation under        29.8  
Conjugate numbers      193  
Content, elementary      1B 5  
Content, elementary, extension      1.1 3.12 98  
Content, elementary, S-continuous (=  -additive)      34  
Continuity a.e. with respect to a lifting      34.8  
Continuity of linear maps on        4.6  
Convergence a.e.      74  
Convergence at infinity      54  
Convergence in mean      76  
Convergence in measure      18.14 28.15  
Convergence of a martingale      31A-D  
Convergence of a martingale, locally in p-mean      31.2 31.11  
Convergence of a martingale, pointwise      31D 31.11  
Daniell integration      1A  
Daniell integration, of linear maps      11C  
Darboux property      24.12  
Dense family of integrable sets      86  
Dense family of integrable sets, examples      8.8 8.20 165  
Dense subsets of        8.4  
Dense topology      34B see  
Dense,   in        5.3  
density      34.11 see  
Derivative, locally integrable      22A-B  
Derivative, locally integrable, existence for almost weakly compact measures      37B  
Derivative, locally integrable, existence for scalar measures      22.6 22.7  
Derivative, scalarly locally integrable      37A  
Dini's theorem      4 12  
Dirac measure      24B  
Direct integral of Banach spaces      7.22  
Direct sum of Riesz spaces      20  
Direct sum property      16.10  
Discrete (= atomic) measures      210  
Disintegration of a measure      36A  
Disintegration of a support function      36.8  
Disintegration of a tight measure      36.3  
Disintegration, strong      36.3 see  
Disjoint Banach-valued measures      3C 31 3.17  
Disjoint elements of a Riesz space      19  
Disjoint, characterization of disjoint scalar measures      3.8 6.6  
distribution      28.15  
dm/dn      198  
Dominated Baire functions and sets      66  
Dominated Borel functions and sets      92  
Dominated functions and sets      4B  
Dominated integration lattices      4.4  
Dominated sets are precompact      5.4  
Doob's martingale theorem      31.9  
Dual of        21.6 21.7 31.7  
Dual of        21.7 37.1  
Dual of a Riesz space      28  
E', F', G'      47  
Egoroff's theorem      18.11  
Elementary integral      1B 3  
Elementary integral, *-continuous      3D 31  
Elementary integral, associated with an elementary content      1.1 3.12  
Elementary measure space      1B 3  
Elementary measure space, *-continuous      31  
Equi-tight measures      24.14  
Equivalent functions modulo negligible ones      78  
Equivalent upper gauges      8.18 see  
Equivalent upper gauges are simultaneously tight      24.16  
Equivalent upper gauges have the same dense dominated families      14.4  
Equivalent upper gauges have the same essential sup-norm      20.2  
Essential  -open kernel      34.11  
Essential essentially equal upper S-norms      7.15  
Essential supremum norm      20A  
Essential upper gauge      13A  
Expectation      33A see  
Extended reals      5A  
Extension of an elementary content on a clan      1.1 3.12 98  
Extension of an elementary integral under an upper norm      1A 10A  
Extension of linear maps      11A 11C  
Extension of the Riemann integral of step functions      1A  
Fatou's lemma      8.11  
Field of integrable variation      218  
Field of linear maps      224  
Field of measures and of upper gauges      25A-B 26A-C see  
Field, adequate      26A-B  
Field, integrable      25A  
Field, tame      230  
Finite sets and upper gauges      13A 138  
Fubini's theorem      25.3 see 27.4 36.4  
Full clan (= -ring)      66 67  
Full integration domain      6B see 6C "S-measure"  
Full projective system or limit      30A  
Full span      6A  
Gelfand transform of functions      5D  
Gelfand — Bauer transform of measures      5D 17A-B see  
gM,        199 15.9  
gm, gn      70 197  
Hahn's theorem      6.6 see 6.17  
 |