Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ivey Th.A., Landsberg J.M. — Cartan for Beginners: Differential Geometry Via Moving Frames and Exterior Differential Systems
Ivey Th.A., Landsberg J.M. — Cartan for Beginners: Differential Geometry Via Moving Frames and Exterior Differential Systems



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Cartan for Beginners: Differential Geometry Via Moving Frames and Exterior Differential Systems

Авторы: Ivey Th.A., Landsberg J.M.

Аннотация:

This book is an introduction to Cartan's approach to differential geometry. Two central methods in Cartan's geometry are the theory of exterior, differential systems and the method of moving frames. The book presents thorough and modern treatments of both subjects, including their applications to classic and contemporary problems.

The book begins with the classical geometry of surfaces and basic Riemannian geometry in the language of moving frames, along with an elementary introduction to exterior differential systems. Key concepts are developed incrementally, with motivating examples leading to definitions, theorems and proofs.

Once the basics of the methods are established, applications and advanced topics are developed. One particularly notable application is to complex algebraic geometry, where important results from projective differential geometry are expanded and updated. The book features an introduction to G-structures and a treatment of the theory of connections. The Cartan machinery is also applied to obtain explicit solutions of PDEs, via Darboux's method, the method of characteristics, and Cartan's method of equivalence.

This text is suitable for a one-year graduate course in differential geometry. It has numerous exercises and examples throughout. The book will also be of use to experts in such areas as PDEs and algebraic geometry who want to learn how moving frames and exterior differential systems apply to their fields.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2003

Количество страниц: 378

Добавлена в каталог: 11.06.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Tableau, determined      158
Tangent bundle      335
Tangent space      335
Tangent star      86
Tangential defect      129
Tangential defect, critical      135
Tangential surface      40
Tangential variety      86
Tangential variety, dimension of      128
Tautological EDS for torsion-free G-structures      293
Tautological form for coframe bundle      49
Tensor product      312
Terracini's Lemma      87
Third fundamental form, projective      96
TM, tangent bundle      335
Torsion of connection      279
Torsion of curve in E3      25
Torsion of G-structure      280
Torsion of linear Pfaffian system      165 175
Transformation, Baecklund      232 236
Transformation, Cole — Hopf      232 238
Transformation, fractional linear      20
Transformation, Lie      231
Transformation, Miura      234
Triangulation      61
Triply orthogonal systems      251—254
U(n), unitary group      319
Umbilic point      39
Uniruled complex manifold      310
Uniruled variety      113
Unitary group      319
Variation of Hodge structure      189
Variety, algebraic      82
Variety, dual      87 118
Variety, flag      85
Variety, miniscule      104
Variety, rational homogeneous      83
Variety, ruled      113
Variety, secant      86
Variety, Segre      84
Variety, spinor      85 106
Variety, tangential      86
Variety, uniruled      113
Variety, Veronese      85
Vector bundle, induced      283
Vector field      335
Vector field, flow of a      6
Vector field, left-invariant      17
Veronese embedding      85
Veronese re-embedding      85 109
Veronese variety      85
Veronese variety, fundamental forms of      99
Vertical vector      339
Volume form      46
Waring problems      313
Warp of a surface      4
Wave equation      203 349
Web      267
Web, hexagonality of      271
Wedge product      314
Wedge product, matrix      18
Weierstrass representation      228—229
Weight      327
Weight diagram for invariants      305
Weight lattice      329
Weight zero invariant      300
Weight, highest      329
Weight, multiplicity of      327
Weingarten equation      224
Weingarten surface, linear      183 224 261
Weyl curvature      330
Wirtinger inequality      199
Zak's theorem on linear normality      128
Zak's theorem on Severi varieties      128
Zak's theorem on tangencies      131
[X,Y]      336
{}, linear span      340
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте