Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ivey Th.A., Landsberg J.M. — Cartan for Beginners: Differential Geometry Via Moving Frames and Exterior Differential Systems
Ivey Th.A., Landsberg J.M. — Cartan for Beginners: Differential Geometry Via Moving Frames and Exterior Differential Systems



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Cartan for Beginners: Differential Geometry Via Moving Frames and Exterior Differential Systems

Авторы: Ivey Th.A., Landsberg J.M.

Аннотация:

This book is an introduction to Cartan's approach to differential geometry. Two central methods in Cartan's geometry are the theory of exterior, differential systems and the method of moving frames. The book presents thorough and modern treatments of both subjects, including their applications to classic and contemporary problems.

The book begins with the classical geometry of surfaces and basic Riemannian geometry in the language of moving frames, along with an elementary introduction to exterior differential systems. Key concepts are developed incrementally, with motivating examples leading to definitions, theorems and proofs.

Once the basics of the methods are established, applications and advanced topics are developed. One particularly notable application is to complex algebraic geometry, where important results from projective differential geometry are expanded and updated. The book features an introduction to G-structures and a treatment of the theory of connections. The Cartan machinery is also applied to obtain explicit solutions of PDEs, via Darboux's method, the method of characteristics, and Cartan's method of equivalence.

This text is suitable for a one-year graduate course in differential geometry. It has numerous exercises and examples throughout. The book will also be of use to experts in such areas as PDEs and algebraic geometry who want to learn how moving frames and exterior differential systems apply to their fields.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2003

Количество страниц: 378

Добавлена в каталог: 11.06.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Gauss image, characterization of      93
Gauss map, algebraic      55
Gauss map, Euclidean      46
Gauss map, projective      77
Gauss map, varieties with degenerate      89
Gauss — Bonnet formula      64
Gauss — Bonnet theorem      62
Gauss — Bonnet theorem for compact hypersurfaces      64
Gauss — Bonnet theorem, local      60
Gauss — Bonnet — Chern theorem      65
Gauss' theorema egregium      48
General point      83
Generalized conformal structure      309
Generalized Monge system      139
Generic point      83
Geodesic      59
Geodesic curvature      59
Geodesic of affine connection      285
Geodesic torsion      60
GL(V)      316
Gr(k, V), orthogonal Grassmannian      75
Grassmann bundle      177
Grassmann bundle, canonical system on      177
Grassmannian      72 316
Grassmannian, isotropic      84
Grassmannian, tangent space of      73
Half-spin representation      107
Hartshorne's conjecture      140
Heat equation      350
Helicoid      39
Hermitian form      319
Hermitian inner product      319
Hexagonality      271
Higher associated hypersurface      124
Holomorphic map      345
Holonomy      286—295
Holonomy bundle      287
Holonomy group      287
Hom(V, W)      312
Homogeneous space      15
Hopf differential      230
Horizontal curve      287
Horizontal lift      287
Hyperbolic space      58
Hyperbolic space, isometric immersions of      197
Hyperplane section of a variety      88
Hypersurfaces in $\mathbb{E}^N$, fundamental theorem for      55
Ideal, algebraic      340
Ideal, differential      340
Ideal, Frobenius      11
II, Euclidean second fundamental form      46
II, projective second fundamental form      77
III, projective third fundamental form      96
Incidence correspondence      88
Independence condition      27
Index of a vector field      61
Index of relative nullity      80
Induced vector bundle      283
Initial data      349
Initial value problem      349
Integrable extension      232
Integrable extension via conservation law      233
Integral curve      5
Integral element      27
Integral element, Kaehler-ordinary      245
Integral element, Kaehler-regular      249
Integral element, ordinary      256
Integral manifold      27 29
Integral, intermediate/general      219
Interior product      315
Involutive integral element      256
Involutive linear Pfaffian system      176
Involutive tableau      155
Isometric embedding      169—173
Isothermal coordinates      57
Isothermal coordinates, existence of      185
Isotropic Grassmannian      84
Isotropy representation      16
J(Y, Z), join of varieties      86
Jacobi identity      320
Jets      27
Join of varieties      86
Kaehler manifold      199
KdV equation      234 236
KdV equation, prolongation algebra      235
Killing form      323
Laplace system, tableau for      157
Laplace's equation      223
Laplacian      56
Left action      15
Left-invariant, differential form      17
Left-invariant, vector field      17 320
Level      155
Lie algebra      320
Lie algebra of a Lie group      17
Lie algebra, semi-simple      327
Lie algebra, simple      327
Lie bracket      336
Lie derivative      339
Lie group      316
Lie group, linear representation of      316
Lie group, matrix      16 316—318
Lie group, Maurer — Cartan form of      17
Lift      16
Lift, first-order adapted      37
Line congruence      237
Line of curvature      60 253
Line of curvature, isothermal coordinates along      188
Linear map      311
Linear map, transpose/adjoint of      312
Linear normality, Zak's theorem on      128
Linear Pfaffian systems      164
Linear Pfaffian systems, Cartan's algorithm for      178
Linear Pfaffian systems, involutivity      176
Linear projection of variety      88
Linear syzygy      111
Liouville's equation      218 237
Locally ruled variety      89
Locally symmetric      290
Majorants      150
Manifold, contact      33
Manifold, restraining      255
Manifold, symplectic      31
Matrix Lie groups      316—318
Maurer — Cartan equation      18
Maurer — Cartan form of a matrix Lie group      17
Maurer — Cartan form of an arbitrary Lie group      17
Maximal torus      327
Mean curvature in coordinates      4
Mean curvature vector      69
Mean curvature via frames      36—38
Mean curvature, geometric interpretation of      68
Minimal hypersurfaces      266
Minimal submanifold      197
Minimal surface      68 228—229
Minimal surface, Riemannian metric of      186
Minimizing submanifold      197
Minuscule variety      104
Modified KdV equation      234
Monge — Ampere equation      222
Monge — Ampere system      223
Monge's method      224
Moving frame      4
Moving frame, adapted      12
Multilinear      312
Multiplicity of intersection      83
Musical isomorphism      53
Newlander — Nirenberg theorem      345
Nijenhuis tensor      346
Non-characteristic initial data      157
Nondegenerate quadratic form      322
Normal bundle      46 66
Normal curvature      60
Normal space, of submanifold in $\mathbb{P}^N$      77
O(V, Q), orthogonal group      317
Octonions      324—326
Orthogonal Grassmannian      75
Orthogonal group      317
Orthogonal involutive Lie algebra      291
Osculating circle      14
Osculating hypersurface      109 111
Osculating quadric hypersurface      109
Parabolic subgroup      84 104
Parallel surfaces      225
Parallel transport      287
path geometry      295—308
Path geometry, definition of      295 298
Path geometry, dual      297
Path geometry, flat      296
Pfaff's Theorem      33
Pfaffian      322
Pfaffian system      341
Pfaffian system, linear      164
Picard's theorem      5 10
Poincare — Hopf theorem      62
Point transformation      295
Polar spaces      246—248
Principal curvatures      39
Principal framing      42
Principal symbol      145
Projective differential invariants in coordinates      108
Projective second fundamental form      77
Projective second fundamental form, coordinate description of      81
Projective second fundamental form, frame definition of      79
Projective structure      286
Prolongation      147 177 214 220
Prolongation of a G-structure      281
Prolongation property      97
Prolongation property, strict      105
Prolongation structures      233
Pseudospherical surfaces      226—227
Pseudospherical surfaces of revolution      227
Pseudospherical surfaces, Baecklund transformation for      237
Pullback      337
Pushforward      337
Rank of a Lie algebra      327
Rank of a Pfaffian system      341
Rank of a tensor      313
Rational homogeneous variety      83
Reductive Lie group/Lie algebra      327
Refined third fundamental form      129
Regular curve      13
Regular second-order PDB      174
Relative tangent star      131
Representation of Lie algebra      320
Representation of Lie group      316
Representation, isotropy      16
Restraining manifold      255
Retracting space      209
Ricci curvature      53 262
Riemann curvature tensor      52—55 273
Riemann invariant      217
Riemann surface      346
Riemannian geometry      271—273
Riemannian geometry, fundamental lemma      50—51 273
Riemannian manifold      47
Riemannian manifold, flat      52
Riemannian metric      46 47
Right action      15
Root      328
Root system      328
Ruled surface      41
Ruled variety      113
S-structure      309
Scalar curvature      53 262 266 330
Schur's lemma      317
Schwarzian derivative      22
Secant defect      129
Secant variety      86
Second fundamental form, base locus of      80
Second fundamental form, Euclidean      46
Second fundamental form, projective      77
Second-order PDE, characteristic variety      182
Second-order PDE, classical notation      174
Second-order PDE, tableau      175
Section of vector bundle      335
Sectional curvature      53
Segre product of varieties      84
Segre product of varieties, fundamental forms of      101
Segre variety      84 159
Segre variety, fundamental forms of      100
Semi-basic form      339
Semi-Riemannian manifold      274
Semi-simple Lie algebra      327
Severi variety      102
Severi variety, fundamental form of      103
Severi variety, Zak's theorem on      128
Signature of quadratic form      322
Simple Lie algebra      327
Sine-Gordon equation      223 226 235
Singloc $| II_{M,x} |$      80
Singular locus of      80
Singular solutions      191
SL(V), $SL_n$, special linear group      317
SO(V,Q), special orthogonal group      317
Space form      57
Space form, isometric immersions of      194
Special Lagrangian submanifolds      200 265
Special linear group      317
Special orthogonal group      317
Special unitary group      319
Spencer cohomology      180
Spin representation      106 107
Spinor variety      85 106
Stabilizer type      282
SU(n), special unitary group      319
Submanifold, associative      265
Submanifold, Lagrangian      185 264
Submanifold, special Lagrangian      200 265
Surface of revolution      41 227
Surface, Bonnet      44
Surface, catenoid      43
Surface, cone      44
Surface, constant mean curvature      229—231
Surface, cylinder      44
Surface, developable      40
Surface, flat      41
Surface, focal      237 266
Surface, helicoid      39
Surface, isothermal coordinates on      57
Surface, linear Weingarten      183 224 261
Surface, minimal      68 228
Surface, parallel      225
Surface, pseudospherical      226
Surface, ruled      41
Surface, warp of      4
Surface, with degenerate Gauss image      91
Symbol mapping      157
Symbol relations      145 174
Symmetric connection      285
Symmetric Lie algebra      291
Symmetric space      290
Symmetries      241
Symplectic form      32 185 199 212 264 317
Symplectic group      317
Symplectic manifold      31
T*M, cotangent bundle      335
Tableau      145
Tableau of linear Pfaffian system      174
Tableau of order p      147
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте