Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Mill J.V. — The Infinite-Dimensional Topology of Function Spaces
Mill J.V. — The Infinite-Dimensional Topology of Function Spaces



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: The Infinite-Dimensional Topology of Function Spaces

Автор: Mill J.V.

Аннотация:

In this book we study function spaces of low Borel complexity. Techniques from general topology, infinite-dimensional topology, functional analysis and descriptive set theory are primarily used for the study of these spaces. The mix of methods from several disciplines makes the subject particularly interesting. Among other things, a complete and self-contained proof of the Dobrowolski-Marciszewski-Mogilski Theorem that all function spaces of low Borel complexity are topologically homeomorphic, is presented.


In order to understand what is going on, a solid background in infinite-dimensional topology is needed. And for that a fair amount of knowledge of dimension theory as well as ANR theory is needed. The necessary material was partially covered in our previous book `Infinite-dimensional topology, prerequisites and introduction'. A selection of what was done there can be found here as well, but completely revised and at many places expanded with recent results. A `scenic' route has been chosen towards the Dobrowolski-Marciszewski-Mogilski Theorem, linking the results needed for its proof to interesting recent research developments in dimension theory and infinite-dimensional topology.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 1st edition

Год издания: 2001

Количество страниц: 644

Добавлена в каталог: 11.06.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Sikorski      384 611
Simple chain      54
simplex      114 124
Simplex, full      141
Simplex, geometric      114
Simplex, n-dimensional      114
Simplicial complex      116 117
Simplicial complex, locally finite      118
Simplicially homeomorphic      123
Sin(1/x)-continuum      29 57 503 505 517
Skeleton      117 122 271
Smirnov      593
Sokolov      393 604
Solenoid, dyadic      85
Solenoid, p-adic      581
Souslin      580 594 611
Space      465
Space filling curve      46
Space, adjunction      507 508
Space, Baire      see Baire space
Space, Banach      see Banach space
Space, Euclidean      3 64 151 461
Space, infinite-dimensional compacta      350
Space, linear      see linear space
Space, normal      121
Space, perfectly disconnected      385 592
Space, rigid      447 581
Space, scattered      417
Space, topological      465
Space, Tychonoff      367
Spanier      582 611
Sperner      582 611
Sperner Lemma      141
Sperner map      141
Sphere      3 9 20 26 29 63 85 92 146—149 194—196 201 204 207 226 288 291 297 310 461 473 511 516
Spiez      605
Square      87 89 93 384 450
Standard simplex      539
Standard triangulation      117 139
Star      119 460
Star refinement      272 460
Star, finite      135 138 166
Stciner, A.K.      591 611
Steel      581 603
Steenrod      593 602
Steiner, E.F.      594 611
Steinlein      245 586 611
Sternfeld      582 586 587 606 607 611
Stone      369 610 611
Straight-line segment      19
Straight-line segment, parametrization      361
Strong local homogeneity      64 73 75 580
Strongly discrete family      377- 379
Strongly homogeneous      75
Strongly infinite-dimensional      see dimension strong
Subbase      19 31
Subcomplex      117
Subpolyhedron      124
Subpolytope      124
Subspace Theorem      164
SUM      371
Sup-norm      4
Support      404—407
Support homeomorphism      64
Swelling      157 158
Symmetric difference      457
t*-equh'alent      426 -156
t-equivalent      371 414 426 428 445 456 591 592
Taimanov      593 611
Talagrand      591
Taylor      579 611
Theorem Addition      178
Theorem Anderson      9 579 588
Theorem Borsuk      149
Theorem Borsuk — Ulam      149 174
Theorem Brouwer      143 145 148 149 157 260 587 594
Theorem Brown      90
Theorem Cantor — Bendixson      467
Theorem Cauty      24 583
Theorem Chapman      588
Theorem Closed Graph      12
Theorem Coincidence of Dimension Functions      180
Theorem Countable Closed Sum      163
Theorem Curtis — Schori — West      291
Theorem Dobrowolski — Marciszewski — Mogilski      444
Theorem Dugundji      23 29 394 451 588
Theorem Freudenthal      137
Theorem Galvin — Prikry      586
Theorem Jordan      174
Theorem Keller      581
Theorem Kuratowski — Wojdyslawski      19
Theorem Lavrentieff      493
Theorem Lusternik — Schnirelman — Borsuk      149 174
Theorem Marciszewski      398 447
Theorem Mazurkiewicz      55
Theorem Michael      16
Theorem Miljutin      370
Theorem Nagata — Smirnov — Bing      593
Theorem Pol      254
Theorem Schaudcr      148 583
Theorem Sierpiriski      502
Theorem Souslin      47
Theorem Sperner      141
Theorem Subspace      164
Theorem Tietze      24
Theorem Toruriczyk      291 294 588 589
Theorem Urysohn      465
Theorem van Douwen      48
Theorem van Engelen      581
Theorem West      588
Tietze      593 611
Tkachuk      591 611
Tolstowa      583 610
Tomaszewski      586 611
Topological group      1 37 60 182 215 462
Topological group $\mathbb{S}^1$      85
Topological group $\Sigma_2$      85
Topological group homeomorphisms      35—37 583
Topological group Q is not      60
Topological group, homogeneous      464
Topological property, closed hereditary      84
Topological property, countably productive      84
Topological space      465
Topologically complete      47—49 55 57 65 66 76 77 183 222 226 480 482 484 493 518 519 522 523 526 581 594
Topologically complete, $C_P(X)$      415
Topologically complete, $C_p*(X)$      591
Topologically complete, $l^2$      9
Topologically complete, $\mathbb{P}$      482
Topologically complete, $\mathbb{Q}$ is not      483 517
Topologically complete, $\mathcal{H} (X,Y)$      35
Topologically complete, A(N)R enlargement      305
Topologically complete, Baire      482
Topologically complete, C(X,Y)      33
Topologically complete, compactification      253
Topologically complete, Continuum Hypothesis      47
Topologically complete, dense subspace      484 526
Topologically complete, dimension      220 224 584
Topologically complete, hyperspace      98
Topologically complete, inverse limit      84
Topologically complete, nowhere      581
Topologically complete, topological sum      484
Topologically complete, totally disconnected      183 218 221
Topologically complete, weakly n-dimensional      231
Topology, compact-open      19 20 31
Topology, coordinatewise convergence      9 467
Topology, euclidean      19 20
Topology, pointvvise convergence      4 368 372
Topology, quotient      see quotient topology
Topology, Tychonoff product      368
Topology, uniform convergence      7 31
Topology, Vietoris      101 108 582
Topology, weak      354
Topology, Whitehead      118 119 132
Topsoe      610
Torubczyk Theorems      291 294 588
Toruriczyk      263 291 294 580 588 605 611
Totally disconnected      50 58 167 183 218 221
Tower      337
Tower, deformation property      334 343
Tower, expansive      331
Translation      462
Triangulation      117
Triangulation, standard      117
Trivial homotopy class      511
Tumarkin      583—585 611 612
Tychonoff product topology      368
Tychonoff space      367
Tymchatyn      583 584 609
Type homotopy      276
Type of a point      63
Tzafriri      579 607
Ul'janov      593 612
Ultrafilter      391—393 459 462 463 495 496
Unbounded component      505
Unicoherent      204 226 514 515
Uniformly continuous      477 448
UNION operator      99
Unit ball      3
Unit ball, $\mathbb{R}^n$      3 461
Unit interval      457
Unit sphere      3
Unit sphere, $\mathbb{R}^n$      3 461
Universal $\mathcal{F}_{\sigma \delta}$      439
Universal $\mathcal{F}_{\sigma}$      354
Universal $\mathcal{M}_{\Gamma}$      344 345
Universal curve      583 585
Universal reflexively      345 350 355 364 439
Universal space, compact      176
Universal space, Noebeling      168 172 174
Universal space, weakly n.-dimensional      232
Universal strongly $\mathcal{F}_{\sigma \delta}$      361
Universal strongly $\mathcal{M}$      348 361
Universal strongly $\mathcal{M}_{\delta}$      348
Universal strongly $\mathcal{M}_{\Gamma}$      344 346
Upper semi-continuous      257 489
Upper semi-continuous decomposition      106 501 505—509
Urysohn      222 580 581 583—585 593 594 597 612
Urysohn function      469
Urysohn Metrization Theorem      465 593
Uspenskii      585
Ustinov      611
Usual topology on $[\mathbb{N}]^{\omega}$      239
Valdivia      384 600
van Dantzig      582 601
van de Vel      580
van der Bijl      588 599
van Douwen      75 384 580—583 586 591—594 602
van Engelen      49 580 581 594 598 602 603
van Hartskamp, x      587 604
van Mill      9 49 64 294 325 367 384 426 434 445—447 456 580—582 584—592 598 601—604 607 608 612
Vaughan      608
Vermeer      586 587 597 604
Vertex      116—118 280
Vietoris      582 612
Vietoris topology      101 108 582
von Neumann      455
Wallman      222 584 585 593 605 612
Wallman base      93 185 494—500
Wallman compactification      93 185 494 498 499 593
Walsh      585 587—589 599 604 610 612
Warsaw circle      301
Warsaw circle, homotopically trivial      285
Wazewski      582 612
Weak Cartesian product      355
Weak P-point      386
Weak topology      354 465
Weakly infinite-dimensional      251 252 254 257
Weakly infinite-dimensional, not countable dimensional      254
Weakly n-dimensional      228 231 586
Weakly n-dimensional, universal      232
Weakly one-dimensional      235
Weight      369
West      291 588 589 610 612
Whitehead      132 612
Whitehead topology      118 119 132
Whitehead torsion      588
Whitney      582 612
Whitney level      105 106 108 109 258
Whitney map      103—106 108 109 258
Wille      581 604
Wimmers      393 612
Wojdyslawski      579 588 612
Wong      589 610
Yankov      455
Z-imbedding      327 328 338 343 360 361
Z-Map      327
Z-set      307—311 323—331 333 334 337 338 343 58
Zarelua      585 612
Zarichnyi      437 588 590 598
zero-dimensional      41—45 57 58 73 75 76 153 154 157 165 174 177 178 182 210 230 241 253 425 581
Zero-dimensional, almost      167 168 189 192 583
Zorn      80
1 2 3 4
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте