Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Mill J.V. — The Infinite-Dimensional Topology of Function Spaces
Mill J.V. — The Infinite-Dimensional Topology of Function Spaces



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: The Infinite-Dimensional Topology of Function Spaces

Автор: Mill J.V.

Аннотация:

In this book we study function spaces of low Borel complexity. Techniques from general topology, infinite-dimensional topology, functional analysis and descriptive set theory are primarily used for the study of these spaces. The mix of methods from several disciplines makes the subject particularly interesting. Among other things, a complete and self-contained proof of the Dobrowolski-Marciszewski-Mogilski Theorem that all function spaces of low Borel complexity are topologically homeomorphic, is presented.


In order to understand what is going on, a solid background in infinite-dimensional topology is needed. And for that a fair amount of knowledge of dimension theory as well as ANR theory is needed. The necessary material was partially covered in our previous book `Infinite-dimensional topology, prerequisites and introduction'. A selection of what was done there can be found here as well, but completely revised and at many places expanded with recent results. A `scenic' route has been chosen towards the Dobrowolski-Marciszewski-Mogilski Theorem, linking the results needed for its proof to interesting recent research developments in dimension theory and infinite-dimensional topology.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 1st edition

Год издания: 2001

Количество страниц: 644

Добавлена в каталог: 11.06.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Lemma, $\Delta$-system      592
Lemma, Disjoint Refinement      453
Lemma, Kuratowski — Zorn      18 459
Length of a sequence      46
Level, homotopy      70 510
Level, preserving      71
Level, Whitney      105 106 108 109 258
Levi      594 606
Levin      582—585 587 603 606 607
Lewis      582 607
Lexicographic order      216
Limited by a cover      65 263 265 267
Lindenstrauss      579 607
Linear function      12 17 20 21
Linear homeomorphism      12 21 370 398 403 411 450
Linear hull      111
Linear order      126 216
Linear space      29
Linear space, incomplete      589
Linear space, not ANR      264 580
Linear space, not locally convex      20
Linear space, unit sphere      20
Linear subspace      20
Linear, space      1—4 8 10 12 15—21 26 29 111 114 116 123 130 131 148 197 252 288 361 363 364 369 402 435 452
Linearly, homeomorphic      369 370 398 403 404 447 450
Linearly, independent      5 7 18 20 112
Lipschitz function      99 490
Lipscomb      586 607
Local base      19 183 368 467 468
Locally compact      58 64 87 121 425 456 473 478 482
Locally compact, nowhere      57 58 76
Locally connected      55—58 86 102 222 224 226 285 288 467 505 516
Locally connected in dimension n      296
Locally contractible      28 296 301 516
Locally contractible at a point      516
Locally convex      2 18 19 23—25 29 288 402 452 583
Locally convex $l^P$ is not      20
Locally finite      22 108 136 138 157 158 160 486 487 490
Locally finite, simplicial complex      118 121 125 273 277 284
Locally homotopy negligible      263 588
Locally, path-connected      29 503 504
Locally, uncountable      568
Lowen      579 598
Lower semi-continuous      404 406 488
Lower semi-continuous, set-valued function      13
Lusin      587
Lusternik      583 607
Lusternik — Schnirelman — Borsuk Theorem      148 149 174 586
Lutzer      367 446 456 590—592 601 607
Map, $\mathfrak{U}$      169
Map, $\varepsilon$      34 66 67 90 135
Map, closed      109 241 460 464 467
Map, closed, dimension raising      199
Map, essential      512
Map, inessential      512
Map, irreducible      477
Map, linear      see linear function
Map, monotone      504
Map, open      107 108 464 477
Map, quotient      108 505 506 508 509
Map, Sperner      141
Map, Whitney      103—106 108 109 258
Marciszcwski      ix x 18 367 393 398 414 426 434 445—447 456 588 590—593 600 601 607
Mardesic      588 607
Martin      610
Mauldin      587 605
Mazur      586
Mazurkiewicz      580 582 585 586 594 605 607
Mazurkiewicz Theorem      55
McCoy      367 590 591 607
Meager      66 87 447 449 483 520 522 526
Meager at a point      526
Meager filter      389—391 434 436
Meager, collection of sets      389
Menger      234 583—585 605 607
Mesh collection      459
Mesh simplicial complex      130
Mesh subdivision      130 131
Metric      30 90 361 363 463 464 478 484
Metric, admissible      460
Metric, bounded      459 463
Metric, complete      3 21 33 35 58 96 98 463 474 477 479 480 485
Metric, convex      108 477 479 588 593
Metric, derived from a norm      2 3
Metric, Euclidean      3
Metric, Hausdorff      95 96 106 107
Metric, Nagata      586
Metric, non-Archimedean      57 58
Metric, nonconvex      325
Metric, s      19
Metric, totally bounded      96 98 479 484
Metrization Theorem, Nagata — Smirnov — Bing      593
Metrization Theorem, Urysohn      465 593
Michael      396 452 579 607 608
Michalewski      x 591 608
Miljutin      370 608
Miljutin Theorem      370
Miller      517 581 595 603 608
Mogilski      ix 367 434 588—592 599 601 608
Moise      593 608
Monger compacta      588
Monger curve      583 585
Monotone map      504
Moore      59—51 608
Morita      584 609
Moschovakis      517 609
Mostowski      517 594 606
Moszyriska      588 609
Mrowka      584 609
multi-valued function      404
Munkres      582 609
Nadler      582 605 609
Nagami      584 609
Nagata      372 457 582 586 593 609
Nagata — Smirnov — Bing Theorem      593
Natural numbers      457
Near homeomorphism      66 67 70 90 94
Negrepontis      590 592 601
Neighborhood retract      512
Nerve      132 133
Net      484
Nhu      588 590 601
Nikodym      594 609
Nishiura      584 597 604
Nobeling      583 609
Nodec space      385
Noebeling's universal space      168 172 174
Norm      2 3 579
Norm, Euclidean      3
Normal set, in the sense of Frechet      221
Novikov      587 597
Nowhere, $\sigma$-compact      581
Nowhere, countable      581
Nowhere, dense      86 197 387 388 436
Nowhere, locally compact      57 08 76
Nowhere, topologically complete      581
Ntantu      367 591 607
Null-sequence      508
Nullhomotopic      145 148 149 204 300 510 511 514
Okunev      426 609
Olszewski      586 609
Open ball      459
Open Ellentuck topology      240
Open map      10 57 107 108 460 464 477
Open problem      see problem open
Open, shrinking      485
Open, swelling      157 158
Order cover      160
Order, lexicographic      216
Order, linear      126 216
Order, preserving indexed collection      344
Origin of Q      4 61
Otto      583 602
Oversteegen      583 584 609
Oxtoby      384 593 609
P-point      393 446
Page      579 600
Paracompact      125 369 396 487 490
Parthasarathy      585 609
Partial realization      270 273 281 282 284 296
Partition      1—16 153—155 157 175 179 182 193 206 209 221 252 504 505
Partition space      125 443 509
Partition unity      487 488
Partition, $\mathbb{R}$      80
Partition, Bing      210 213
Partition, continuum      502
Partition, cut is      222
Partition, degree      153
Partition, irreducible      155 157 193 226
Path      503
Path-component      503
Path-connected      29 55 57 58 94 285 503—505 511
Path-connected locally      29 57 503 504
Pavlovskii      591 609
Peano      580
Peano continuum      see continuum Peano
Peano map      580
Pelant      591 592 598 607 609
Perfectly disconnected      385 592
Pestov      591 609
Petezyriski      371 579 588 589 599 609
Poincarc      221 583 609
Point, accumulation      462
Point, cut      51
Point, P      393 416
Point, weak P      386
Pointwise convergence topology      see topology pointwise
Pol Examples      447 450 587
Pol, E.      587 600 609
Pol, R.      x. 220 384 446 447 456 580 583—587 590 592 602—604 606—610
Polyhedron      124 136 274 310 588
Polytope      123 132 136 166 270 274 276 304
Pontrjagin      583 584 603 610
Power set      458
Prikry      586 603
Problem, Alexandroff      253 254 587
Problem, Anderson — Bing      589
Problem, Banach and Frechet      579
Problem, de Groot      584
Problem, open      145 161 216 236 260 404 414 '125 446 447 580 581 587 592
Problem, Schauder      582
PRODUCT      26 41 58 82 235 339 368 371 450 461 467 480 516 519
Product, cartesian      457
Product, Cartesian, weak      355
Projection      70 81 84 398 457 477 478
Property of Baire      434 520—523 594
Property, closed hereditary      84
Property, countably productive      84
Property, fixed-point      92 145 146 148 516
Przymusinski      583 610
Pseudo arc      215
Pseudo boundary      60
Pseudo interior      60
Punctiform      221
Pytkeev      591 610
Q-set      595
Quinn      589 610
Quotient map      108 505 506 508 509
Quotient topology      398 505 506 509
Quotient topology, not metrizable      509
Radul      437 588 590 598
Ramsey set      239
Ramsey set, completely      239 240
Ramsey theory      238 240
Rational numbers      42 58 76 78—80 182 384 416 457 483 494 517 519 520 581 594
Rational numbers, not topologically complete      483
Real numbers      457
Realization, full      270 273 277 284 296
Realization, geometric      116
Realization, partial      see partial realization
Reed      612
refinement      160 166 176 263 273 277 284 296 458
Refinement, disjoint      41 168 453 463
Refinement, star      272 460
Refinement, star-finite      136 166 272
Reflexively universal      345
Repovs      579 610
retract      146 148 276 512 516 517
Retract neighborhood      26 512
Retraction      512
Rigid space      447 581
Rogers      455 610
Rogers, Jr.      216 587 606 610
Roy      584 610
Rubin      585 587 590 602 610
Rudin, W.      393 610
S      3 9 19 20 26 60 66 257 310 311 314 319 320 322—324 339 342 343 364 579 587 588
Salomon      x
Scattered      417 419 456
Scattered height      418
Schauder      582 610
Schauder fixed-point theorem      148 583
Schnirehnan      583 607
Schori      291 581 585 588 601 610
Segal      584 588 606 607
Segment, initial      46
Segment, straight-line      19
Seirienov      579 610
Selection      13 29
Selection, $G_{\delta}$      217
Selection, continuous      13 16
Semadeni      394 451 603
Semi-continuous, lower      13 406 488
Semi-continuous, upper      257 489
Separated      1^91
Separating set      148
Separator      504
Sequence functions      4®9
Sequence homeomorphisms      59 65
Sequence, $\mathcal{F}_{\sigma}$-absorbirig      352
Sequence, absorbing      350
Sequence, compacta      478
Sequence, inverse      see inverse sequence
Sequence, null      58 508 509
Sequentially compact      473 474
Set, $\sigma Z$      see $\sigma Z$-set
Set, analytic      48 49 77 435 436 439 441 455 522 523 526 590 594
Set, Borel      see. Borel set
Set, Cantor      see Cantor set
Set, coanalytic      594
Set, derived      417
Set, meager      483
Set, power      458
Set, property of Baire      434 520—523 594
Set, Ramsey      see. Ramsey set
Set, scattered      417
Set, Z      see Z-set
Set-valued function      12
Shchepin      585 603
Shelah      393 581 610
Sher      589 610
Shift, $\mathbb{R}^{\mathbb{Z}$      587
Shift, inverse limit      91 92 249
Shrinkable      66—68 70
Shrinking      159 160 167 244 485 486
Shrinking, closed      185
Shrinking, open      485
Sierpinski      580—582 585—587 592 594 611
Sierpiriski Carpet      583
Sierpiriski Theorem      502
1 2 3 4
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте